

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)

(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

SYLLABUS BOOK FOR STUDENTS

2019 SCHEME

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in education.

MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in Engineering and Frontier Technology and to impart quality education to mould technically competent citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe discipline, culture and spiritually, and to mould them in to technological giants, dedicated research scientists and intellectual leaders of the country who can spread the beams of light and happiness among the poor and the underprivileged.

ABOUT DEPARTMENT

Established in: 2002

♦ Course offered: B.Tech in Electronics and Communication Engineering

M.Tech in VLSI

- ♦ Approved by AICTE New Delhi and Accredited by NAAC
- ♦ Affiliated to the University of Dr. A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Providing Universal Communicative Electronics Engineers with corporate and social relevance towards sustainable developments through quality education.

DEPARTMENT MISSION

- 1) Imparting Quality education by providing excellent teaching, learning environment.
- 2) Transforming and adopting students in this knowledgeable era, where the electronic gadgets (things) are getting obsolete in short span.
- 3) To initiate multi-disciplinary activities to students at earliest and apply in their respective fields of interest later.
- 4) Promoting leading edge Research & Development through collaboration with academia & industry.

PROGRAMME EDUCATIONAL OBJECTIVES

- PEOI. To prepare students to excel in postgraduate programmes or to succeed in industry / technical profession through global, rigorous education and prepare the students to practice and innovate recent fields in the specified program/ industry environment.
- PEO2. To provide students with a solid foundation in mathematical, Scientific and engineering fundamentals required to solve engineering problems and to have strong practical knowledge required to design and test the system.
- PEO3. To train students with good scientific and engineering breadth so as to comprehend, analyze, design, and create novel products and solutions for the real life problems.
- PEO4. To provide student with an academic environment aware of excellence, effective communication skills, leadership, multidisciplinary approach, written ethical codes and the life-long learning needed for a successful professional career.

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for Real-time Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development of high quality System Software Tools and Efficient Web Design Models with a focus on performance optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating hardware/software products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create innovative career path and for the socially relevant issues.

EST 130	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	CATEGORY	L	Т	P	CREDIT	YEAR OF INTRODUCTION
		ESC	4	0	0	4	2019

Preamble:

This course aims to (1) equip the students with an understanding of the fundamental principles of electrical engineering(2) provide an overview of evolution of electronics, and introduce the working principle and examples of fundamental electronic devices and circuits (3) provide an overview of evolution of communication systems, and introduce the basic concepts in radio communication.

Prerequisite: Physics and Mathematics (Pre-university level)

Course Outcomes: After the completion of the course the student will be able to

CO 1	Apply fundamental concepts and circuit laws to solve simple DC electric circuits			
CO 2	Develop and solve models of magnetic circuits			
CO 3	Apply the fundamental laws of electrical engineering to solve simple ac circuits in steady			
	state			
CO 4	Describe working of a voltage amplifier			
CO 5	Outline the principle of an electronic instrumentation system			
CO 6	Explain the principle of radio and cellular communication			

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	РО	РО	РО
										10	11	12
CO 1	3	1	-	-	-	-	-	-	-/	-	-	2
CO 2	3	1	- 1	-	-	- 10	-	-		-	-	2
CO 3	3	1		-	-	-	-	-	-	-	-	2
CO 4	2	-11	-	-	-	-	-	-	-	-	-	-
CO 5	2	-	-	-		-		-	-	-	-	2
CO 6	2	- 1	-	-	-	- 1	-	-	-	-	=	2

Assessment Pattern

	Basic	Electrical E	Engineering	Basic Electronics Engineering			
Bloom's Category	Continuous Assessment Tests		End Semester Examination	Continuous Assessmen		End Semester Examination	
	Test 1	Test 2	(Marks)	Test 1	Test 2	(Marks)	
	(Marks) (Marks)			(Marks)	(Marks)		
Remember	0	0	10	10	10	20	
Understand	12.5	12.5	20	15	15	30	
Apply	12.5	12.5	20				
Analyse							
Evaluate							
Create							

Mark distribution

Total Marks	CIE marks	ESE marks	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks
Continuous Assessment Test (2 numbers) : 25 marks
Assignment/Quiz/Course project : 15 marks

End Semester Examination Pattern: There will be two parts; Part I – Basic Electrical Engineering and Part II – Basic Electronics Engineering. Part I and PART II carries 50 marks each. For the end semester examination, part I contain 2 parts - Part A and Part B. Part A contain 5 questions carrying 4 marks each (not exceeding 2 questions from each module). Part B contains 2 questions from each module out of which one to be answered. Each question carries 10 mark and can have maximum 2 subdivisions. The pattern for end semester examination for part II is same as that of part I. However, student should answer both part I and part 2 in separate answer booklets.

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Solve problems based on current division rule.
- 2. Solve problems with Mesh/node analysis.
- 3. Solve problems on Wye-Delta Transformation.

Course Outcome 2 (CO2):

- 1. Problems on series magnetic circuits
- 2. Problems on parallel magnetic circuits
- 3. Problems on composite magnetic ciruits
- 4. Course Outcome 3 (CO3):
- 1. problems on self inductance, mutual inductance and coefficient of coupling
- 2. problems on rms and average values of periodic waveforms
- 3. problems on series ac circuits
- 4. Compare star and Delta connected 3 phase AC systems.

Course Outcome 4 (CO4): Describe working of a voltage amplifier

1. What is the need of voltage divider biasing in an RC coupled amplifier?

- 2. Define operating point in the context of a BJT amplifier.
- 3. Why is it required to have a voltage amplifier in a public address system?

Course Outcome 5 (CO5): Outline the principle of an electronic instrumentation system

- 1. Draw the block diagram of an electronic instrumentation system.
- 2. What is a transducer?
- 3. Explain the working principle of operation of digital multimeter.

Course Outcome 6 (CO6): Explain the principle of radio and cellular communication

- 1. What is the working principle of an antenna when used in a radio transmitter?
- 2. What is the need of two separate sections RF section and IF section in a super heterodyne receiver?
- 3. What is meant by a cell in a cellular communication?

Model Question Paper

QP CODE:	Pages: 3
Reg No.:	
Name:	

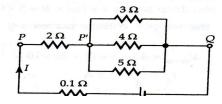
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR

Course Code: EST 130

Course Name: BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING

Max. Marks: 100 Duration: 3 hours

Answer both part I and part 2 in separate answer booklets


PART I

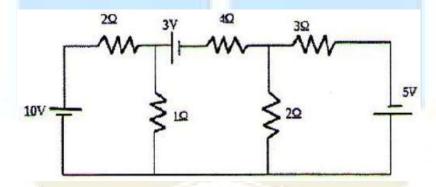
BASIC ELECTRICAL ENGINEERING

PART A

Answer all questions; each question carries 4 marks.

1. Calculate the current through the 4Ω resistor in the circuit shown, applying current division rule:

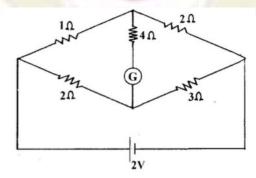
- 2. Calculate the RMS and average values of a purely sinusoidal current having peak value 15A.
- 3. An alternating voltage of (80+j60)V is applied to an RX circuit and the current flowing through the circuit is (-4+j10)A. Calculate the impedance of the circuit in rectangular and polar forms. Also determine if X is inductive or capacitive.
- 4. Derive the relation between line and phase values of voltage in a three phase star connected system.
- 5. Compare electric and magnetic circuits.


(5x4=20)

PART B

Answer one question from each module; each question carries 10 marks.

Module 1


6. . Calculate the node voltages in the circuit shown, applying node analysis:

7. (a) State and explain Kirchhoff's laws.

(4 marks)

(b) Calculate the current through the galvanometer (G) in the circuit shown:

(6 marks)

Module 2

- 8. (a) State and explain Faraday's laws of electromagnetic induction with examples. (4 marks)
 - (b) Differentiate between statically and dynamically induced emf. A conductor of length 0.5m moves in a uniform magnetic field of flux density 1.1T at a velocity of 30m/s. Calculate the emf induced in the conductor if the direction of motion of the conductor is inclined at 60^0 to the direction of field. (6 marks)
- 9. (a) Derive the amplitude factor and form factor of a purely sinusoidal waveform. (5 marks)
 - (b) A current wave is made up of two components-a 5A dc component and a 50Hz ac component, which is a sinusoidal wave with a peak value of 5A. Sketch the resultant waveform and determine its RMS and average values. (5 marks)

Module 3

- 10. Draw the power triangle and define active, reactive and apparent powers in ac circuits. Two coils A and B are connected in series across a 240V, 50Hz supply. The resistance of A is 5Ω and the inductance of B is 0.015H. If the input from the supply is 3kW and 2kVAR, find the inductance of A and the resistance of B. Also calculate the voltage across each coil.
- 11. A balanced three phase load consists of three coils each having resistance of 4Ω and inductance 0.02H. It is connected to a 415V, 50Hz, 3-phase ac supply. Determine the phase voltage, phase current, power factor and active power when the loads are connected in (i) star (ii) delta.

(3x10=30)

PART II

BASIC ELECTRONICS ENGINEERING

PART A

Answer all questions; each question carries 4 marks.

- 1. Give the specifications of a resistor. The colour bands marked on a resistor are Blue, Grey, Yellow and Gold. What are the minimum and maximum resistance values expected from that resistance?
- 2. What is meant by avalanche breakdown?
- 3. Explain the working of a full-wave bridge rectifier.
- 4. Discuss the role of coupling and bypass capacitors in a single stage RC coupled amplifier.
- 5. Differentiate AM and FM communication systems.

(5x4=20)

PART B

Answer one question from each module; each question carries 10 marks.

Module 4

6.	a) Explain with diagram the principle of operation of an NPN transistor.	(5)
	b) Sketch and explain the typical input-output characteristics of a BJT when connec	ted in
	common emitter configuration. OR	(5)
7.	a) Explain the formation of a potential barrier in a P-N junction diode.	(5)
	b) What do you understand by Avalanche breakdown? Draw and explain the V-I character	eristics
	of a P-N junction and Zener diode.	(5)
	Module 5	
8.	a) With a neat circuit diagram, explain the working of an RC coupled amplifier.	(6)
	b) Draw the frequency response characteristics of an RC coupled amplifier and state the re	easons
	for the reduction of gain at lower and higher frequencies.	(4)
	OR	
9.	a) With the help of block diagram, explain how an electronic instrumentation system.	(6)
	b) Explain the principle of an antenna.	(4)
	Module 6	
10.	a) With the help of a block diagram, explain the working of Super hetrodyne receiver.	(6)
	b) Explain the importance of antenna in a communication system.	(4)
	OR	
11.	a) With neat sketches explain a cellular communication system.	(5)
	b) Explain GSM communication with the help of a block diagram.	(5)
	(3x10	0=30)

SYLLABUS

MODULE 1: Elementary Concepts of Electric Circuits

Elementary concepts of DC electric circuits: Basic Terminology including voltage, current, power, resistance, emf; Resistances in series and parallel; Current and Voltage Division Rules; Capacitors & Inductors: V-I relations and energy stored. Ohms Law and Kirchhoff's laws-Problems; Star-delta conversion (resistive networks only-derivation not required)-problems.

Analysis of DC electric circuits: Mesh current method - Matrix representation - Solution of network equations. Node voltage methods-matrix representation-solution of network equations by matrix methods. Numerical problems.

MODULE 2: Elementary Concepts of Magnetic circuits, Electromagnetic Induction and AC fundamentals

Magnetic Circuits: Basic Terminology: MMF, field strength, flux density, reluctance - comparison between electric and magnetic circuits- Series and parallel magnetic circuits with composite materials, numerical problems.

Electromagnetic Induction: Faraday's laws, problems, Lenz's law- statically induced and dynamically induced emfs - Self-inductance and mutual inductance, coefficient of coupling

Alternating Current fundamentals: Generation of alternating voltages-Representation of sinusoidal waveforms: frequency, period, Average, RMS values and form factor of waveforms-Numerical Problems.

MODULE 3: AC Circuits

AC Circuits: Phasor representation of sinusoidal quantities. Trignometric, Rectangular, Polar and complex forms. Analysis of simple AC circuits: Purely resistive, inductive & capacitive circuits; Inductive and capacitive reactance, concept of impedance. Average Power Power factor. Analysis of RL, RC and RLC series circuits-active, reactive and apparent power. Simple numerical problems.

Three phase AC systems: Generation of three phase voltages; advantages of three phase systems, star and delta connections (balanced only), relation between line and phase voltages, line and phase currents- Numerical problems

MODULE 4

Introduction to Semiconductor devices: Evolution of electronics — Vacuum tubes to nano electronics. Resistors, Capacitors and Inductors (constructional features not required): types, specifications. Standard values, color coding. PN Junction diode: Principle of operation, V-I characteristics, principle of avalanche breakdown. Bipolar Junction Transistors: PNP and NPN structures, Principle of operation, relation between current gains in CE, CB and CC, input and output characteristics of common emitter configuration.

MODULE 5

Basic electronic circuits and instrumentation: Rectifiers and power supplies: Block diagram description of a dc power supply, Working of a full wave bridge rectifier, capacitor filter (no analysis), working of simple zener voltage regulator. Amplifiers: Block diagram of Public Address system, Circuit diagram and working of common emitter (RC coupled) amplifier with its frequency response, Concept of voltage divider biasing. Electronic Instrumentation: Block diagram of an electronic instrumentation system.

MODULE 6

Introduction to Communication Systems: Evolution of communication systems – Telegraphy to 5G. Radio communication: principle of AM & FM, frequency bands used for various communication systems, block diagram of super heterodyne receiver, Principle of antenna – radiation from accelerated charge. Mobile communication: basic principles of cellular communications, principle and block diagram of GSM.

Text Books

- 1. D P Kothari and I J Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- 2. D C Kulshreshtha, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- 3. ChinmoySaha, Arindham Halder and Debarati Ganguly, Basic Electronics Principles and Applications, Cambridge University Press, 2018.
- 4. M.S.Sukhija and T.K.Nagsarkar, Basic Electrical and Electronics Engineering, Oxford University Press, 2012.
- 5. Wayne Tomasi and Neil Storey, A Textbook On Basic Communication and Information Engineering, Pearson, 2010.

Reference Books

- 1. Del Toro V, "Electrical Engineering Fundamentals", Pearson Education.
- 2. T. K. Nagsarkar, M. S. Sukhija, "Basic Electrical Engineering", Oxford Higher Education.
- 3. Hayt W H, Kemmerly J E, and Durbin S M, "Engineering Circuit Analysis", Tata McGraw-Hill
- 4. Hughes, "Electrical and Electronic Technology", Pearson Education.
- 5. V. N. Mittle and Arvind Mittal, "Basic Electrical Engineering," Second Edition, McGraw Hill.
- 6. Parker and Smith, "Problems in Electrical Engineering", CBS Publishers and Distributors.
- 7. S. B. Lal Seksena and Kaustuv Dasgupta, "Fundamentals of Electrical Engineering", Cambridge University Press.
- 8. Anant Agarwal, Jeffrey Lang, Foundations of Analog and Digital Electronic Circuits, Morgan Kaufmann Publishers, 2005.
- 9. Bernard Grob, Ba sic Electronics, McGraw Hill.
- 10. A. Bruce Carlson, Paul B. Crilly, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, Tata McGraw Hill, 5th Edition.

COURSE CONTENTS AND LECTURE SCHEDULE

No	Topic	No. of Lectures
1	Elementary Concepts of Electric Circuits	
1.1	Elementary concepts of DC electric circuits:	
	Basic Terminology including voltage, current, power, resistance, emf; Resistances in series and parallel; Current and Voltage Division Rules; Capacitors & Inductors: V-I relations and energy stored.	1
	Ohms Law and Kirchhoff's laws-Problems;	2
	Star-delta conversion (resistive networks only-derivation not required)-problems.	1
1.2	Analysis of DC electric circuits: Mesh current method - Matrix representation - Solution of network equations.	1
	Node voltage methods-matrix representation-solution of network equations by matrix methods.	1
	Numerical problems.	2
	Numerical problems.	
2	Elementary Concepts of Magnetic circuits, Electromagnetic Infundamentals	duction and AC
2.1	Elementary Concepts of Magnetic circuits, Electromagnetic Inc	duction and AC
	Elementary Concepts of Magnetic circuits, Electromagnetic Infundamentals Magnetic Circuits: Basic Terminology: MMF, field strength, flux density,	
	Elementary Concepts of Magnetic circuits, Electromagnetic Infundamentals Magnetic Circuits: Basic Terminology: MMF, field strength, flux density, reluctance - comparison between electric and magnetic circuits- Series and parallel magnetic circuits with composite materials, numerical problems. Electromagnetic Induction: Faraday's laws, problems, Lenz's law-	1
2.1	Elementary Concepts of Magnetic circuits, Electromagnetic Infundamentals Magnetic Circuits: Basic Terminology: MMF, field strength, flux density, reluctance - comparison between electric and magnetic circuits- Series and parallel magnetic circuits with composite materials, numerical problems.	1 2
2.1	Elementary Concepts of Magnetic circuits, Electromagnetic Infundamentals Magnetic Circuits: Basic Terminology: MMF, field strength, flux density, reluctance - comparison between electric and magnetic circuits- Series and parallel magnetic circuits with composite materials, numerical problems. Electromagnetic Induction: Faraday's laws, problems, Lenz's law-statically induced and dynamically induced emfs -	1 2

3.1	AC Circuits: Phasor representation of sinusoidal quantities. Trigonometric, Rectangular, Polar and complex forms.	1
	Analysis of simple AC circuits: Purely resistive, inductive & capacitive circuits; Inductive and capacitive reactance, concept of impedance. Average Power, Power factor.	2
	Analysis of RL, RC and RLC series circuits-active, reactive and apparent power.	1
	Simple numerical problems.	2
3.2	Three phase AC systems: Generation of three phase voltages; advantages of three phase systems, star and delta connections (balanced only), relation between line and phase voltages, line and phase currents- Numerical problems.	2
4	Introduction to Semiconductor devices	
4.1	Evolution of electronics – Vacuum tubes to nano electronics (In evolutional perspective only)	1
4.2	Resistors, Capacitors and Inductors: types, specifications. Standard values, color coding (No constructional features)	2
4.3	PN Junction diode: Principle of operation, V-I characteristics, principle of avalanche breakdown	2
4.4	Bipolar Junction Transistors: PNP and NPN structures, Principle of operation, relation between current gains in CE, CB and CC, input and output characteristics of common emitter configuration	3
5	Basic electronic circuits and instrumentation	
5.1	Rectifiers and power supplies: Block diagram description of a dc power supply, Working of a full wave bridge rectifier, capacitor filter (no analysis), working of simple zener voltage regulator	3
5.2	Amplifiers: Block diagram of Public Address system, Circuit diagram and working of common emitter (RC coupled) amplifier with its frequency response, Concept of voltage divider biasing	4
5.3	Electronic Instrumentation: Block diagram of an electronic instrumentation system	2
6	Introduction to Communication Systems	

6.2	Radio communication: principle of AM & FM, frequency bands used for	4
	various communication systems, block diagram of super heterodyne	
	receiver, Principle of antenna – radiation from accelerated charge	
6.3	Mobile communication: basic principles of cellular communications,	2
	principle and block diagram of GSM.	

Suggested Simulation Assignments for Basic Electronics Engineering

- 1. Plot V-I characteristics of Si and Ge diodes on a simulator
- 2. Plot Input and Output characteristics of BJT on a simulator
- 3. Implementation of half wave and full wave rectifiers
- 4. Simulation of RC coupled amplifier with the design supplied
- 5. Generation of AM signal

Note: The simulations can be done on open tools such as QUCS, KiCad, GNURadio or similar software to augment the understanding.

EST	PROGRAMING IN C	CATEGORY	L	т	Р	CREDIT	YEAR OF INTRODUCTION
102		ESC	2	1	2	4	2019

Preamble: The syllabus is prepared with the view of preparing the Engineering Graduates capable of writing readable C programs to solve computational problems that they may have to solve in their professional life. The course content is decided to cover the essential programming fundamentals which can be taught within the given slots in the curriculum. This course has got 2 Hours per week for practicing programming in C. A list showing 24 mandatory programming problems are given at the end. The instructor is supposed to give homework/assignments to write the listed programs in the rough record as and when the required theory part is covered in the class. The students are expected to come prepared with the required program written in the rough record for the lab classes.

Prerequisite: NIL

Course Outcomes: After the completion of the course the student will be able to

CO 1	Analyze a computational problem and develop an algorithm/flowchart to find its solution
CO 2	Develop readable* C programs with branching and looping statements, which uses Arithmetic, Logical, Relational or Bitwise operators.
CO 3	Write readable C programs with arrays, structure or union for storing the data to be processed
CO 4	Divide a given computational problem into a number of modules and develop a readable multi-function C program by using recursion if required, to find the solution to the computational problem
CO 5	Write readable C programs which use pointers for array processing and parameter passing
CO 6	Develop readable C programs with files for reading input and storing output

readable* - readability of a program means the following:

- 1. Logic used is easy to follow
- 2. Standards to be followed for indentation and formatting
- 3. Meaningful names are given to variables
- 4. Concise comments are provided wherever needed

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	0	0	0		Ø				②	②	Ø
CO2	0	0	0	0	0	-				0		Ø
CO3	0	0	0	0	0	ļ,	II.	Ň		0	M	Ø
CO4	0	0	0	0	0	M	+	4	44	0	0	Ø
CO5	0	0			0		Ĥ			0		Ø
CO6	0	Ø			0					Ø		Ø

Assessment Pattern

	Continuous A	End Semester		
Bloom's Category	Test 1 (Marks)	Test 2 (Marks)	Examination Marks	
Remember	15	10	25	
Understand	10	15	25	
Apply	20	20	40	
Analyse	5	5	10	
Evaluate			1	
Create	11 30	4.0		

Mark distribution

Total Marks	CIE	ESE	ESE Duration
	Marks	Marks	
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks

Continuous Assessment Test 1 (for theory, for 2 hrs) : 20 marks

Continuous Assessment Test 2 (for lab, internal examination, for 2 hrs) : 20 marks

Internal Examination Pattern: There will be two parts; Part A and Part B. Part A contains 5 questions with 2 questions from each module (2.5 modules \times 2 = 5), having 3 marks for each question. Students should answer all questions. Part B also contains 5 questions with 2 questions from each module (2.5 modules \times 2 = 5), of which a student should answer any one. The questions should not have subdivisions and each one carries 7 marks.

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which a student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Sample Course Level Assessment Questions

Course Outcome 1 (CO1): Write an algorithm to check whether largest of 3 natural numbers is prime or not. Also, draw a flowchart for solving the same problem.

Course Outcome 2 (CO2): Write an easy to read C program to process a set of n natural numbers and to find the largest even number and smallest odd number from the given set of numbers. The program should not use division and modulus operators.

Course Outcome 3(CO3):Write an easy to read C program to process the marks obtained by n students of a class and prepare their rank list based on the sum of the marks obtained. There are 3 subjects for which examinations are conducted and the third subject is an elective where a student is allowed to take any one of the two courses offered.

Course Outcome 4 (CO4): Write an easy to read C program to find the value of a mathematical function f which is defined as follows. f(n) = n! / (sum of factors of n), if n is not prime and f(n) = n! / (sum of digits of n), if n is prime.

Course Outcome 5 (CO5): Write an easy to read C program to sort a set of n integers and to find the number of unique numbers and the number of repeated numbers in the given set of numbers. Use a function which takes an integer array of n elements, sorts the array using the Bubble Sorting Technique and returns the number of unique numbers and the number of repeated numbers in the given array.

Course Outcome 6 (CO6): Write an easy to read C program to process a text file and to print the Palindrome words into an output file.

Model Question paper

PAGES:3

(10x3=30)

(4)

QP CODE:

Reg No	:
Name	:
АРЈ АВ	DUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR
	Course Code: EST 102
	Course Name: Programming in C (Common to all programs)
Max.M	arks:100 Duration: 3 Hours
	PART A
	Answer all Questions. Each question carries 3 Marks
1.	Write short note on processor and memory in a computer.
2.	What are the differences between compiled and interpreted languages? Give example for
	each.
3.	Write a C program to read a Natural Number through keyboard and to display the reverse
	of the given number. For example, if "3214567" is given as input, the output to be shown is "7654123".
4.	Is it advisable to use <i>goto</i> statements in a C program? Justify your answer.
5.	Explain the different ways in which you can declare & initialize a single dimensional array.
6.	Write a C program to read a sentence through keyboard and to display the count of white
	spaces in the given sentence.
7.	What are the advantages of using functions in a program?
8.	With a simple example program, explain scope and life time of variables in C.
9.	Write a function in C which takes the address of a single dimensional array (containing a
	finite sequence of numbers) and the number of numbers stored in the array as arguments
	and stores the numbers in the same array in reverse order. Use pointers to access the
	elements of the array.

Part B

10. With an example, explain the different modes of opening a file.

Answer any one Question from each module. Each question carries 14 Marks

- 11. (a) Draw a flow chart to find the position of an element in a given sequence, using linear searching technique. With an example explain how the flowchart finds the position of a given element.(10)
 - (b) Write a pseudo code representing the flowchart for linear searching.

12	example.	th an (10)
	(b) Write an algorithm representing the flowchart for bubble sort.	(4)
13	 (a) Write a C program to read an English Alphabet through keyboard and display wh the given Alphabet is in upper case or lower case. (b) Explain how one can use the builtin function in C, scanfto read values of different types. Also explain using examples how one can use the builtin function in C, printffo formatting. 	(6) data
	OR	
14	. (a) With suitable examples, explain various operators in C. (b) Explain how characters are stored and processed in C.	(10) (4)
15	. (a) Write a function in C which takes a 2-Dimensional array storing a matrix of number the order of the matrix (number of rows and columns) as arguments and displays the	
	of the elements stored in each row.	(6)
	(b) Write a C program to check whether a given matrix is a diagonal matrix. OR	(8)
16	. (a) Without using any builtin string processing function like strlen, strcat etc., wi	rite a
	program to concatenate two strings. (b) Write a C program to perform bubble sort.	(8) (6)
17	. (a) Write a function namely <i>myFact</i> in C to find the factorial of a given number. Also, we another function in C namely <i>nCr</i> which accepts two positive integer parameters <i>n</i> and a returns the value of the mathematical function <i>C(n,r)</i> (n! / (r! x (n - r)!)). The function <i>n</i> expected to make use of the factorial function <i>myFact</i> . (b) What is recursion? Give an example.	r and
	OR	
18	(a) With a suitable example, explain the differences between a structure and a union	in C. (6)
	(b) Declare a structure namely <i>Student</i> to store the details (<i>roll number, name, mark_f</i> of a student. Then, write a program in C to find the average mark obtained by the student a class for the subject <i>Programming in C</i> (using the field <i>mark_for_C</i>). Use arrestructures to store the required data	dents
19	. (a) With a suitable example, explain the concept of pass by reference. (b) With a suitable example, explain how pointers can help in changing the content single dimensionally array passed as an argument to a function in	
	OR	(8)

20. (a) Differentiate between sequential files and random access files?

(4)

- (b) Using the prototypes explain the functionality provided by the following functions. (10) rewind()
 - i. fseek()
 - ii. ftell()
 - iii. fread()
 - iv. fwrite() (14X5=70)

SYLLABUS

Programming in C (Common to all disciplines)

Module 1

Basics of Computer Hardware and Software

Basics of Computer Architecture: processor, Memory, Input& Output devices

Application Software & System software: Compilers, interpreters, High level and low level languages Introduction to structured approach to programming, Flow chart Algorithms, Pseudo code (bubble sort, linear search - algorithms and pseudocode)

Module 2

Program Basics

Basic structure of C program: Character set, Tokens, Identifiers in C, Variables and Data Types, Constants, Console IO Operations, printf and scanf

Operators and Expressions: Expressions and Arithmetic Operators, Relational and Logical Operators, Conditional operator, size of operator, Assignment operators and Bitwise Operators. Operators Precedence

Control Flow Statements: If Statement, Switch Statement, Unconditional Branching using goto statement, While Loop, Do While Loop, For Loop, Break and Continue statements. (Simple programs covering control flow)

Module 3

Arrays and strings

Arrays Declaration and Initialization, 1-Dimensional Array, 2-Dimensional Array
String processing: In built String handling functions (strlen, strcpy, strcat and strcmp, puts, gets)
Linear search program, bubble sort program, simple programs covering arrays and strings

Module 4

Working with functions

Introduction to modular programming, writing functions, formal parameters, actual parameters Pass by Value, Recursion, Arrays as Function Parameters structure, union, Storage Classes, Scope and life time of variables, *simple programs using functions*

Module 5

Pointers and Files

Basics of Pointer: declaring pointers, accessing data though pointers, NULL pointer, array access using pointers, pass by reference effect

File Operations: open, close, read, write, append

Sequential access and random access to files: In built file handlingfunctions (rewind(), fseek(), ftell(), feof(), fread(), fwrite()), simple programs covering pointers and files.

Text Books

- 1. Schaum Series, Gottfried B.S., Tata McGraw Hill, Programming with C
- 2. E. Balagurusamy, Mcgraw Hill, Programming in ANSI C
- 3. Asok N Kamthane, Pearson, Programming in C
- 4. Anita Goel, Pearson, Computer Fundamentals

Reference Books

- 1. Anita Goel and Ajay Mittal, Pearson, Computer fundamentals and Programming in C
- 2. Brian W. Kernighan and Dennis M. Ritchie, Pearson, C Programming Language
- 3. Rajaraman V, PHI, Computer Basics and Programming in C
- 4. Yashavant P, Kanetkar, BPB Publications, Let us C

Course Contents and Lecture Schedule

	Module 1: Basics of Computer Hardware and Software	(7 hours)
1.1	Basics of Computer Architecture: Processor, Memory, Input& Output devices	2 hours
1.2	Application Software & System software: Compilers, interpreters, High level and low level languages	2 hours
1.3	Introduction to structured approach to programming, Flow chart	1 hours
1.4	Algorithms, Pseudo code (bubble sort, linear search - algorithms and pseudocode)	2 hours
Modul	e 2: Program Basics	(8 hours)
2.1	Basic structure of C program: Character set, Tokens, Identifiers in C, Variables and Data Types , Constants, Console IO Operations, printf and scanf	2 hours
2.2	Operators and Expressions: Expressions and Arithmetic Operators, Relational and Logical Operators, Conditional operator, sizeof operator, Assignment operators and Bitwise Operators. Operators Precedence	2 hours

2.3	Control Flow Statements: If Statement, Switch Statement, Unconditional Branching using goto statement, While Loop, Do While Loop, For Loop, Break and Continue statements. (Simple programs covering control flow)					
Modul	e 3: Arrays and strings:	(6 hours)				
3.1	Arrays Declaration and Initialization, 1-Dimensional Array, 2-Dimensional Array	2 hours				
3.2	String processing: In built String handling functions(<i>strlen, strcpy, strcat and strcmp, puts, gets</i>)	2 hours				
3.3	Linear search program, bubble sort program, simple programs covering arrays and strings					
Modul	e 4: Working with functions	(7 hours)				
4.1	Introduction to modular programming, writing functions, formal parameters, actual parameters	2 hours				
4.2	Pass by Value, Recursion, Arrays as Function Parameters	2 hours				
4.3	structure, union, Storage Classes, Scope and life time of variables, simple programs using functions	3 hours				
Modul	e 5: Pointers and Files	(7 hours)				
5.1	Basics of Pointer: declaring pointers, accessing data though pointers, NULL pointer, array access using pointers, pass by reference effect	3 hours				
5.2	File Operations: open, close, read, write, append					
5.3	Sequential access and random access to files: In built file handlingfunctions (rewind() ,fseek(), ftell(), feof(), fread(), fwrite()), simple programs covering pointers and files.					

C PROGRAMMING LAB (Practical part of EST 102, Programming in C)

Assessment Method: The Academic Assessment for the Programming lab should be done internally by the College. The assessment shall be made on 50 marks and the mark is divided as follows: Practical Records/Outputs - 20 marks (internal by the College), Regular Lab Viva - 5 marks (internal by the College), Final Practical Exam – 25 marks (internal by the College).

The mark obtained out of 50 will be converted into equivalent proportion out of 20 for CIE computation.

LIST OF LAB EXPERIMENTS

- 1. Familiarization of Hardware Components of a Computer
- 2. Familiarization of Linux environment How to do Programming in C with Linux
- 3. Familiarization of console I/O and operators in C
 - i) Display "Hello World"
 - ii) Read two numbers, add them and display theirsum
 - iii) Read the radius of a circle, calculate its area and display it
- iv)Evaluate the arithmetic expression ((a -b / c * d + e) * (f +g)) and display its solution. Read the values of the variables from the user through console.
- **4**. Read 3 integer values and find the largest amoung them.
- **5**. Read a Natural Number and check whether the number is prime or not
- 6. Read a Natural Number and check whether the number is Armstrong or not
- 7. Read n integers, store them in an array and find their sum and average
- **8**. Read n integers, store them in an array and search for an element in the array using an algorithm for Linear Search
- **9**. Read n integers, store them in an array and sort the elements in the array using Bubble Sort algorithm
- 10. Read a string (word), store it in an array and check whether it is a palindrome word or not.
- **11.**Read two strings (each one ending with a \$ symbol), store them in arrays and concatenate them without using library functions.
- 12. Read a string (ending with a \$ symbol), store it in an array and count the number of vowels, consonants and spaces in it.
- **13.** Read two input each representing the distances between two points in the Euclidean space, store these in structure variables and add the two distance values.
- **14**. Using structure, read and print data of n employees (*Name*, *Employee Id and Salary*)
- **15.** Declare a union containing 5 string variables (*Name, House Name, City Name, State and Pin code*) each with a length of C_SIZE (user defined constant). Then, read and display the address of a person using a variable of the union.
- 16. Find the factorial of a given Natural Number n using recursive and non recursive functions
- 17. Read a string (word), store it in an array and obtain its reverse by using a user defined function.
- **18.** Write a menu driven program for performing matrix addition, multiplication and finding the transpose. Use functions to (i) read a matrix, (ii) find the sum of two matrices, (iii) find the product of two matrices, (i) find the transpose of a matrix and (v) display a matrix.
- **19.** Do the following using pointers
 - i) add two numbers
 - ii) swap two numbers using a user defined function
- 20. Input and Print the elements of an array using pointers
- **21.** Compute sum of the elements stored in an array using pointers and user defined function.
- 22. Create a file and perform the following
 - iii) Write data to the file
 - iv) Read the data in a given file & display the file content on console
 - v) append new data and display on console
- **23**. Open a text input file and count number of characters, words and lines in it; and store the results in an output file.

MAT	VECTOR	CALCULUS,	CATEGORY	L	T	Р	CREDIT	Year	of
102	DIFFERENTIAL	EQUATIONS AND						Introduction	
	TRANSFORMS		BSC	3	1	0	4	2019	

Preamble: This course introduces the concepts and applications of differentiation and integration of vector valued functions, differential equations, Laplace and Fourier Transforms. The objective of this course is to familiarize the prospective engineers with some advanced concepts and methods in Mathematics which include the Calculus of vector valued functions, ordinary differential equations and basic transforms such as Laplace and Fourier Transforms which are invaluable for any engineer's mathematical tool box. The topics treated in this course have applications in all branches of engineering.

Prerequisite: Calculus of single and multi variable functions.

Course Outcomes: After the completion of the course the student will be able to

CO 1	Compute the derivatives and line integrals of vector functions and learn their applications						
CO 2	Evaluate surface and volume integrals and learn their inter-relations and applications.						
CO 3	Solve homogeneous and non-homogeneous linear differential equation with constant						
	coefficients						
CO 4	Compute Laplace transform and apply them to solve ODEs arising in engineering						
CO 5	Determine the Fourier transforms of functions and apply them to solve problems arising in						
	engineering						

Mapping of course outcomes with program outcomes

	DO 1	DO.	DO 2	DO 4	DO 5	DO C	DO 7	00	DO 0	DO 10	DO 11	DO 13
	PO 1	PO	PO 3	PO 4	PO 5	PO 6	PO 7	PO	PO 9	PO 10	PO 11	PO 12
		2						8				
CO 1	3	3	3	3	2	1			1	2		2
CO 2	3	3	3	3	2	1			1	2		2
CO 3	3	3	3	3	2	1			1	2		2
CO 4	3	3	3	3	2	1			1	2		2
CO 5	3	3	3	3	2	1			1	2		2

Assessment Pattern

Bloom's Category	Continuous	<mark>Ass</mark> ess <mark>ment Test</mark> s	End Semester	Examination	
	Test 1	Test 2	(Marks)		
	(Marks	(Marks)			
Remember	10	10	20		
Understand	20	20	40		
Apply	20	20	40		
Analyse					
Evaluate					

Create		
or cate		

Mark distribution

Total Marks	CIE (Marks)	ESE (Marks)	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks
Continuous Assessment Test (2 numbers) : 25 marks
Assignment/Quiz/Course project : 15 marks

Assignments: Assignment should include specific problems highlighting the applications of the methods introduced in this course in science and engineering.

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Compute the derivatives and line integrals of vector functions and learn their applications

- 1. How would you calculate the speed, velocity and acceleration at any instant of a particle moving in space whose position vector at time t is r(t)?
- 2. Find the work done by the force field $F = (e^x y^3)\mathbf{i} + (\cos y + x^3)$ on a particle that travels once around the unit circle centred at origin having radius 1.
- 3. When do you say that a vector field is conservative? What are the implications if a vector field is conservative?

Course Outcome 2 (CO2): Evaluate surface and volume integrals and learn their inter-relations and applications

- 1. Write any one application each of line integral, double integral and surface integral.
- 2. Use the divergence theorem to find the outward flux of the vector field $F(x, y, z) = z \mathbf{k}$ across the

$$x^2 + y^2 + z^2 = a^2$$

3. State Greens theorem. Use Green's theorem to express the area of a plane region bounded by a curve as a line integral.

Course Outcome 3 (CO3): Solve homogeneous and non-homogeneous linear differential equation with constant coefficients

- 1. If $y_1(x)$ and $y_2(x)$ are solutions of y'' + py' + qy = 0, where p, q are constants, show that $y_1(x) + y_2(x)$ is also a solution.
- 2. Solve the differential equation $y'' + y = 0.001x^2$ using method of undetermined coefficient.
- 3. Solve the differential equation of $y''' 3y'' + 3y' y = e^x x 1$.

Course Outcome 4 (CO4): Compute Laplace transform and apply them to solve ODEs arising in engineering

- 1. What is the inverse Laplace Transformof (s) = $\frac{3s-137}{s^2+2s+4}$?
- 2. Find Laplace Transform of Unit step function.
- 3. Solve the differential equation of $y'' + 9y = \delta\left(t \frac{\pi}{2}\right)$? Given y(0) = 2, y'(0) = 0

Course Outcome 5(CO5): Determine the Fourier transforms of functions and apply them to solve problems arising in engineering

- 1. Find the Fourier integral representation of function defined by $f(x) = e^{-x}$ for x > 0 and f(x) = 0 for x < 0.
- 2. What are the conditions for the existence of Fourier Transform of a function f(x)?
- 3. Find the Fourier transform of f(x) = 1 for |x| < 1 and f(x) = 0 otherwise.

Model Question paper

QP CODE:	PAGES:3
Reg No:	
Name :	

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION,
MONTH & YEAR

Course Code: MAT 102

Max. Marks: 100 Duration: 3 Hours

VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS

(2019-Scheme)

(Common to all branches)

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Is the vector \mathbf{r} where $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ conservative. Justify your answer.
- 2. State Greens theorem including all the required hypotheses
- 3. What is the outward flux of F(x, y, z) = xi + yj + zk across any unit cube.
- 4. What is the relationship between Green's theorem and Stokes theorem?
- 5. Solve y'' + 4y' + 2.5y = 0
- 6. Does the function $y = C_1 \cos x + C_2 \sin x$ form a solution of y'' + y = 0?. Is it the general solution? Justify your answer.
- 7. Find the Laplace transform of $e^{-t} \sinh 4t$
- 8. Find the Laplace inverse transform of $\frac{1}{s(s^2+\omega^2)}$.
- 9. Given the Fourier transform $\frac{1}{\sqrt{2}}e^{-\frac{\omega^2}{4}}$ of $f(x)=e^{-x^2}$, find the Fourier transform of xe^{-x^2}
- 10. State the convolution theorem for Fourier transform

PART B

(Answer one full question from each module. Each full question carries 14 marks)

MODULE 1

- 11a) Prove that the force field $\mathbf{F} = e^{y}\mathbf{i} + xe^{y}\mathbf{j}$ is conservative in the entire xy-plane
 - b) Use Greens theorem to find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- 12 a) Find the divergence of the vector field $\mathbf{F} = \frac{c}{(x^2+y^2+z^2)^{3/2}}(x\mathbf{i}+y\mathbf{j}+z\mathbf{k})$
 - b) Find the work done by the force field F(x, y, z) = xyi + yzj + xzk along C where

C is the curve
$$\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$$

MODULE II

13 a) Use divergence theorem to find the outward flux of the vector field

$$F = 2xi + 3yj + z^3k$$
 acrossthe unit cube bounded by or $x = 0$, $y = 0, z = 0, x = 1, y = 1, z = 1$

- b) Find the circulation of $\mathbf{F} = (x-z)\mathbf{i} + (y-x)\mathbf{j} + (z-xy)\mathbf{k}$ using Stokes theorem around the triangle with vertices A(1,0,0), B(0,2,0) and C(0,0,1)
- 14 a) Use divergence theorem to find the volume of the cylindrical solid bounded by $x^2+4x+y^2=7$, z=-1, z=4, given the vector field ${\bf F}=xi+yj+zk$ across surfaceof the cylinder
 - **b)** Use Stokes theorem to evaluate $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = x^{2}\mathbf{i} + 3x\mathbf{j} y^{3}\mathbf{k}$ where Cis

the circle $x^2+y^2=1$ in the xy- plane with counterclockwise orientation looking down the positive z-axis

MODULE III

15 a) Solve
$$y'' + 4y' + 4y = x^2 + e^{-x} \cos x$$

b) Solve
$$y''' - 3y'' + 3y' - y = e^x - x - 1$$

16 a) Solve
$$y''' + 3y'' + 3y' + y = 30e^{-x}$$
 given $y(0) = 3, y'(0) = -3$, $y''(0) = -47$

b) Using method of variation of parameters, solve y'' + y = sec x

MODULE IV

- 17 a) Find the inverse Laplace transform of $F(s) = \frac{2(e^{-s} e^{-3s})}{s^2 4}$
- b) Solve the differential equation $y''+16y=4\delta(t-3\pi);\ y(0)=2,y'(0)=0$ using Laplace transform
- 18 a) Solve y'' + 3y' + 2y = f(t) where f(t) = 1 for 0 < t < 1 and f(t) = 1 for t > 1 using Laplace transform
 - b) Apply convolution theorem to find the Laplace inverse transform of $\frac{1}{s^2(s^2+\omega^2)}$

MODULE V

19 a) Find the Fourier cosine integral representation for $f(x) = e^{-kx}$ for x > 0 and

k>0 and hence evaluate $\int_0^\infty \frac{\cos wx}{k^2+w^2}$ the function

- b) Does the Fourier sine transform $f(x) = x^{-1} \sin x$ for $0 < x < \infty$ exist? Justify your answer
- 20 a) Find the Fourier transform of f(x) = |x| for |x| < 1 and f(x) = 0 otherwise
 - b) Find the Fourier cosine transform of $f(x) = e^{-ax}$ for a > 0

Syllabus

Module 1 (Calculus of vector functions)

(Text 1: Relevant topics from sections 12.1, 12.2, 12.6, 13.6, 15.1, 15.2, 15.3)

Vector valued function of single variable, derivative of vector function and geometrical interpretation, motion along a curve-velocity, speed and acceleration. Concept of scalar and vector fields, Gradient and its properties, directional derivative, divergence and curl, Line integrals of vector fields, work as line integral, Conservative vector fields, independence of path and potential function(results without proof).

Module 2 (Vector integral theorems)

(Text 1: Relevant topics from sections 15.4, 15.5, 15.6, 15.7, 15.8)

Green's theorem (for simply connected domains, without proof) and applications to evaluating line integrals and finding areas. Surface integrals over surfaces of the form z = g(x, y), y = g(x, z) or x = g(y, z), Flux integrals over surfaces of the form z = g(x, y), y = g(x, z) or x = g(y, z), divergence theorem (without proof) and its applications to finding flux integrals, Stokes' theorem (without proof) and its applications to finding line integrals of vector fields and work done.

Module-3 (Ordinary differential equations)

(Text 2: Relevant topics from sections 2.1, 2.2, 2.5, 2.6, 2.7, 2.10, 3.1, 3.2, 3.3)

Homogenous linear differential equation of second order, superposition principle, general solution, homogenous linear ODEs with constant coefficients-general solution. Solution of Euler-Cauchy equations (second order only). Existence and uniqueness (without proof). Non homogenous linear ODEs-general solution, solution by the method of undetermined coefficients (for the right hand side of the form x^n , e^{kx} , sinax, cosax, $e^{kx}sinaxe^{kx}cosax$ and their linear combinations), methods of variation of parameters. Solution of higher order equations-homogeneous and non-homogeneous with constant coefficient using method of undetermined coefficient.

Module- 4 (Laplace transforms)

(Text 2: Relevant topics from sections 6.1,6.2,6.3,6.4,6.5)

Laplace Transform and its inverse ,Existence theorem (without proof) , linearity,Laplace transform of basic functions, first shifting theorem, Laplace transform of derivatives and integrals, solution of differential equations using Laplace transform, Unit step function, Second shifting theorems. Dirac delta function and its Laplace transform, Solution of ordinary differential equation involving unit step function and Dirac delta functions. Convolution theorem(without proof)and its application to finding inverse Laplace transform of products of functions.

Module-5 (Fourier Tranforms)

(Text 2: Relevant topics from sections 11.7,11.8, 11.9)

Fourier integral representation, Fourier sine and cosine integrals. Fourier sine and cosine transforms, inverse sine and cosine transform. Fourier transform and inverse Fourier transform, basic properties. The Fourier transform of derivatives. Convolution theorem (without proof)

Text Books

- 1. H. Anton, I. Biven S.Davis, "Calculus", Wiley, 10th edition, 2015.
- 2. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley, 10th edition, 2015.


Reference Books

- 1. J. Stewart, Essential Calculus, Cengage, 2nd edition, 2017
- 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9 th Edition, Pearson, Reprint, 2002.
- 3. Peter O Neil, Advanced Engineering Mathematics, 7th Edition, Thomson, 2007.
- 4. Louis C Barret, C Ray Wylie, "Advanced Engineering Mathematics", Tata McGraw Hill, 6th edition, 2003.
- 5. VeerarajanT."Engineering Mathematics for first year", Tata McGraw Hill, 2008.
- 6. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th edition, 2010.
- 7. Srimanta Pal, Subodh C. Bhunia, "Engineering Mathematics", Oxford University Press, 2015.
- 8. Ronald N. Bracewell, "The Fourier Transform and its Applications", McGraw Hill International Editions, 2000.

Course Contents and Lecture Schedule

No	Topic	No. of Lectures
1	Calculus of vector functions (9 hours)	
1.1	Vector valued function of a scalar variable - derivative of vector valued function of scalar variable t-geometrical meaning	2
1.2	Motion along a curve-speed , velocity, acceleration	1
1.3	Gradient and its properties, directional derivative, divergent and curl	3
1.4	Line integrals with respect to arc length, line integrals of vector fields. Work done as line integral	2
1.5	Conservative vector field, independence of path, potential function	1

2	Vector integral theorems(9 hours)	
2.1	Green's theorem and it's applications	2
2.2	Surface integrals , flux integral and their evaluation	3
2.3	Divergence theorem and applications	2
2.4	Stokes theorem and applications	2
3	Ordinary Differential Equations (9 hours)	n
3.1	Homogenous linear equation of second order, Superposition principle, general solution	1
3.2	Homogenous linear ODEs of second order with constant coefficients	2
3.3	Second order Euler-Cauchy equation	1
3.4	Non homogenous linear differential equations of second order with constant coefficient-solution by undetermined coefficients, variation of parameters.	3
3.5	Higher order equations with constant coefficients	2
4	Laplace Transform (10 hours)	
4.1	Laplace Transform , inverse Transform, Linearity, First shifting theorem, transform of basic functions	2
4.2	Transform of derivatives and integrals	1
4.3	Solution of Differential equations, Initial value problems by Laplace transform method.	2
4.4	Unit step function Second shifting theorem	2
4.5	Dirac Delta function and solution of ODE involving Dirac delta function	2
4.6	Convolution and related problems.	1
5	Fourier Transform (8 hours)	
5.1	Fourier integral representation	1
5.2	Fourier Cosine and Sine integrals and transforms	2
5.3	Complex Fourier integral representation, Fourier transform and its inverse transforms, basic properties	3
5.4	Fourier transform of derivatives, Convolution theorem	2

EST	ENGINEERING	CATEGORY	L	T	P	CREDIT	Year of Introduction
110	GRAPHICS	ESC	2	0	2	3	2019

Preamble: To enable the student to effectively perform technical communication through graphical representation as per global standards.

Prerequisite: NIL

Course Outcomes: After the completion of the course the student will be able to

CO 1	Draw the projection of points and lines located in different quadrants							
CO 2	Prepare multiview orthographic projections of objects by visualizing them in different							
	positions							
CO 3	Draw sectional views and develop surfaces of a given object							
CO 4	Prepare pictorial drawings using the principles of isometric and perspective projections to							
	visualize objects in three dimensions.							
CO 5	Convert 3D views to orthographic views							
CO 6	Obtain multiview projections and solid models of objects using CAD tools							

Mapping of course outcomes with program outcomes

	PO	PO	РО	РО	РО	РО	РО	РО	PO	РО	РО	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	3											
CO 2	3								1/			
CO 3	3	1						-				
CO 4	3									1		
CO 5	3									2		
CO 6	3				3	Corne				3		

Assessment Pattern

	Continuous Ass	sessment Tests	
Bloom's Category	Test 1 (15 Marks)	Test 2 (15 Marks)	End Semester Examination (100 Marks)
Remember			
Understand	5		20
Apply	10	10	80
Analyse			
Evaluate			
Create			

Mark distribution

Total Marks	CIE (Marks)	ESE (Marks)	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks

CIA for section A carries 25 marks (15 marks for 1 test and Class work 10 marks)

CIA for section B carries 15 marks (10 marks for 1 test and Class work 5 marks)

End Semester Examination Pattern:

ESE will be of 3 hour duration on A4 size answer booklet and will be for 100 marks. The question paper shall contain two questions from each module of Section A only. Student has to answer any one question from each module. Each question carries 20 marks.

Course Level Assessment Questions

(Questions may be framed based on the outline given under each course outcome)

Course Outcome 1 (CO1):

- 1. Locate points in different quadrants as per given conditions.
- 2. Problems on lines inclined to both planes.
- 3. Find True length, Inclinations and Traces of lines.

Course Outcome 2 (CO2)

- 1. Draw orthographic views of solids and combination solids
- 2. Draw views of solids inclined to any one reference plane.
- 3. Draw views of solids inclined to both reference planes.

Course Outcome 3 (CO3):

- 1. Draw views of solids sectioned by a cutting plane
- 2. Find location and inclination of cutting plane given true shape of the section
- 3. Draw development of lateral surface of solids and also its sectioned views

Course Outcome 4 (CO4):

- 1. Draw Isometric views/projections of soilds
- 2. Draw Isometric views/projections of combination of soilds
- 3. Draw Perspective views of Soilds

Course Outcome 5 (CO5):

1. Draw Orthographic views of solids from given three dimensional view

Course Outcome 6 (CO6):

- 1. Draw the given figure including dimensions using 2D software
- 2. Create 3D model using modelling software from the given orthographic views or 3D figure or from real 3D objects

7.	Model Qu	estion paper		
QP CODE:			HEW.	PAGES:3
Reg No:		LUG		
Name :	4 NIV	-RAIT	Y	
APJ ABDUL KALAM	TECHNOLOGICAL UNIVERSIT		B.TECH DEGREE EX	(AMINATION,
	MONT	H & YEAR		
	Course Co	de: EST 110		
	ENGINEERI	NG GRAPHICS		
Max.Marks:100			Durati	ion: 3 Hours
	PA	RT A		
	Answer all Questions. Ea	ch question carries	3 Marks	

Instructions: Retain necessary Construction lines

Show necessary dimensions

Answer any ONE question from each module

Each question carries 20 marks

MODULE I

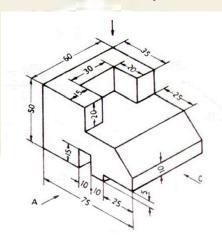
- 1. The end point A of a line is 20mm above HP and 10mm in front of VP. The other end of the line is 50mm above HP and 15mm behind VP. The distance between the end projectors is 70mm. Draw the projections of the line. Find the true length and true inclinations of the line with the principal planes. Also locate the traces of the line.
- 2. One end of a line is 20mm from both the principal planes of projection. The other end of the line is 50mm above HP and 40mm in front of VP. The true length of the line is 70mm. Draw the projections of the line. Find its apparent inclinations, elevation length and plan length. Also locate its traces.

MODULE II

3. A pentagonal pyramid of base side 25mm and height 40mm, is resting on the ground on one of its triangular faces. The base edge of that face is inclined 30° to VP. Draw the projections of the solid.

4. A hexagonal prism has side 25mm and height 50mm has a corner of its base on the ground and the long edge containing that corner inclined at 30° to HP and 45° to VP. Draw the projections of the solid.

MODULE III


- 5. A triangular prism of base side 40mm and height 70mm is resting with its base on the ground and having an edge of the base perpendicular to VP. Section the solid such that the true shape of the section is a trapezium of parallel sides 30mm and 10mm. Draw the projections showing the true shape. Find the inclination of the cutting plane with the ground plane.
- 6. Draw the development of a pentagonal pyramid of base side 30mm and height 50mm. A string is wound from a corner of the base round the pyramid and back to the same point through the shortest distance. Show the position of the string in the elevation and plan.

MODULE IV

- 7. The frustum of a cone has base diameter 50mm and top diameter 40mm has a height of 60mm. It is paced centrally on top of a rectangular slab of size 80x60mm and of thickness 20mm. Draw the isometric view of the combination.
- 8. A hexagonal prism has base side 35mm and height 60mm. A sphere of diameter 40mm is placed centrally on top of it. Draw the isometric projection of the combination.

MODULE V

- 9. Draw the perspective view of a pentagonal prism, 20mm side and 45mm long lying on one of its rectangular faces on the ground and having its axis perpendicular to picture plane. One of its pentagonal faces touches the picture plane and the station point is 50mm in front of PP, 25mm above the ground plane and lies in a central plane, which is 70mm to the left of the center of the prism.
- 10. Draw three orthographic views with dimensions of the object shown in figure below.

(20X5=100)

Time: 3 hours EST110 ENGINEERING GRAPHICS

SCHEME OF VALUATION

1. Locating the points and drawing the projections of the line – 4 marks

Finding true length by any one method – 6 marks

Finding true inclination with VP - 2 marks

Finding true inclination with HP - 2 marks

Locating horizontal trace - 2 marks

Locating vertical trace – 2 marks

Dimensioning and neatness - 2 marks

Total = 20 marks

Max. Marks: 100

2. Locating the points and drawing true length of the line – 4 marks

Finding projections by any method – 6 marks

Finding length of elevation and plan - 2 marks

Finding apparent inclinations – 2 marks

Locating horizontal trace – 2 marks

Locating vertical trace – 2 marks

Dimensioning and neatness – 2 marks

Total = 20 marks

3. Drawing initial position plan and elevation – 4 marks

First inclination views – 4 marks

Second inclination views -8 marks

Marking invisible edges - 2 marks

Dimensioning and neatness – 2 marks

Total = 20 marks

(Any one method or combination of methods for solving can be used.

If initial position is wrong then maximum 50% marks may be allotted for the answer)

4. Drawing initial position plan and elevation – 4 marks

First inclination views – 4 marks

Second inclination views -8 marks

Marking invisible edges – 2 marks

Dimensioning and neatness – 2 marks

Total = 20 marks

(Any one method or combination of methods for solving can be used If initial position is wrong then maximum 50% marks may be allotted for the answer)

Drawing initial position plan and elevation – 4 marks

Locating section plane as per given condition – 5 marks

Drawing true shape -5 marks

Finding inclination of cutting plane – 2 marks

Dimensioning and neatness – 2 marks

Total = 20 marks

6. Drawing initial position plan and elevation – 4 marks

Development of the pyramid – 6 marks

Locating string in development -2 marks Locating string in elevation – 3 marks Locating string in plan – 3 marks Dimensioning and neatness – 2 marks

Total = 20 marks

Drawing initial positions – 4 marks
 Isometric View of Slab -6 marks
 Isometric View of Frustum – 10 marks
 Dimensioning and neatness – 2 marks

Total = 20 marks

(Initial position is optional, hence redistribute if needed. Reduce 4 marks if Isometric scale is taken)

Drawing initial positions – 4 marks
 Isometric scale – 4 marks
 Isometric projection of prism -5 marks
 Isometric projection of sphere – 5 marks
 Dimensioning and neatness – 2 marks

Total = 20 marks

(Initial position is optional, hence redistribute if needed.

Drawing the planes and locating the station point – 4 marks
 Locating elevation points – 2 marks
 Locating plan points – 2 marks
 Drawing the perspective view – 10 marks
 Dimensioning and neatness – 2 marks

Total = 20 marks

10. Drawing the elevation – 8marks
Drawing the plan – 4 marks
Drawing the side view – 4 marks
Marking invisible edges – 2 marks
Dimensioning and neatness – 2 marks

Total = 20 marks

SYLLABUS

General Instructions:

- First angle projection to be followed
- Section A practice problems to be performed on A4 size sheets
- Section B classes to be conducted on CAD lab

SECTION A

Module 1

Introduction: Relevance of technical drawing in engineering field. Types of lines, Dimensioning, BIS code of practice for technical drawing.

Orthographic projection of Points and Lines: Projection of points in different quadrants, Projection of straight lines inclined to one plane and inclined to both planes. Trace of line. Inclination of lines with reference planes True length of line inclined to both the reference planes.

Module 2

Orthographic projection of Solids: Projection of Simple solids such as Triangular, Rectangle, Square, Pentagonal and Hexagonal Prisms, Pyramids, Cone and Cylinder. Projection of solids in simple position including profile view. Projection of solids with axis inclined to one of the reference planes and with axis inclined to both reference planes.

Module 3

Sections of Solids: Sections of Prisms, Pyramids, Cone, Cylinder with axis in vertical position and cut by different section planes. True shape of the sections. Also locating the section plane when the true shape of the section is given.

Development of Surfaces: Development of surfaces of the above solids and solids cut by different section planes. Also finding the shortest distance between two points on the surface.

Module 4

Isometric Projection: Isometric View and Projections of Prisms, Pyramids, Cone, Cylinder, Frustum of Pyramid, Frustum of Cone, Sphere, Hemisphere and their combinations.

Module 5

Perspective Projection: Perspective projection of Prisms and Pyramids with axis perpendicular to the ground plane, axis perpendicular to picture plane.

Conversion of Pictorial Views: Conversion of pictorial views into orthographic views.

SECTION B

(To be conducted in CAD Lab)

Introduction to Computer Aided Drawing: Role of CAD in design and development of new products, Advantages of CAD. Creating two dimensional drawing with dimensions using suitable software. (Minimum 2 exercises mandatory)

Introduction to Solid Modelling: Creating 3D models of various components using suitable modelling software. (Minimum 2 exercises mandatory)

Text Books

- 1. Bhatt, N.D., Engineering Drawing, Charotar Publishing House Pvt. Ltd.
- 2. John, K.C. Engineering Graphics, Prentice Hall India Publishers.

Reference Books

- 1. Anilkumar, K.N., Engineering Graphics, Adhyuth narayan Publishers
- 2. Agrawal, B. And Agrawal, C.M., Engineering Darwing, Tata McGraw Hill Publishers.
- 3. Benjamin, J., Engineering Graphics, Pentex Publishers- 3rd Edition, 2017
- 4. Duff, J.M. and Ross, W.A., Engineering Design and Visualisation, Cengage Learning.
- 5. Kulkarni, D.M., Rastogi, A.P. and Sarkar, A.K., Engineering Graphics with AutoCAD, PHI.
- 6. Luzaddff, W.J. and Duff, J.M., Fundamentals of Engineering Drawing, PHI.
- 7. Varghese, P.I., Engineering Graphics, VIP Publishers
- 8. Venugopal, K., Engineering Drawing and Graphics, New Age International Publishers.

Course Contents and Lecture Schedule

No	SECTION A	No. of Hours		
1	MODULE I			
1.1	Introduction to graphics, types of lines, Dimensioning	1		
1.2	Concept of principle planes of projection, different quadrants, locating points on different quadrants	2		
1.3	Projection of lines, inclined to one plane. Lines inclined to both planes, trapezoid method of solving problems on lines.	2		
1.4	Problems on lines using trapezoid method	2		
1.5	Line rotation method of solving, problems on line rotation method			
2	MODULE II			
2.1	Introduction of different solids, Simple position plan and elevation of solids	2		
2.2	Problems on views of solids inclined to one plane	2		
2.3	Problems on views of solids inclined to both planes	2		
2.4	Practice problems on solids inclined to both planes	2		

3	MODULE III					
3.1	Introduction to section planes. AIP and AVP. Principle of locating cutting points and finding true shape	2				
3.2	Problems on sections of different solids					
3.3	Problems when the true shape is given					
3.4	Principle of development of solids, sectioned solids	2				
4	MODULE IV					
4.1	Principle of Isometric View and Projection, Isometric Scale. Problems on simple solids	2				
4.2	Isometric problems on Frustum of solids, Sphere and Hemisphere	2				
4.3	Problems on combination of different solids	2				
5	MODULE V					
5.1	Introduction to perspective projection, different planes, station point etc. Perspective problems on pyramids	2				
5.2	Perspective problems on prisms	2				
5.3	Practice on conversion of pictorial views into orthographic views	2				
	SECTION B (To be conducted in CAD lab)					
1	Introduction to CAD and software. Familiarising features of 2D software. Practice on making 2D drawings	2				
2	Practice session on 2D drafting	2				
3	Introduction to so <mark>lid modelling</mark> and software	2				
4	Practice session on 3D modelling	2				

EST	ENGINEERING	CATEGORY	L	T	Р	CREDIT	Year of Introduction
100	MECHANICS	ESC	2	1	0	3	2019

Preamble: Goal of this course is to expose the students to the fundamental concepts of mechanics and enhance their problem-solving skills. It introduces students to the influence of applied force system and the geometrical properties of the rigid bodies while stationary or in motion. After this course students will be able to recognize similar problems in real-world situations and respond accordingly.

Prerequisite: Nil

Course Outcomes: After completion of the course the student will be able to:

CO 1	Recall principles and theorems related to rigid body mechanics
CO 2	Identify and describe the components of system of forces acting on the rigid body
CO 3	Apply the conditions of equilibrium to various practical problems involving different force system.
CO 4	Choose appropriate theorems, principles or formulae to solve problems of mechanics.
CO 5	Solve problems involving rigid bodies, applying the properties of distributed areas and masses

Mapping of course outcomes with program outcomes (Minimum requirement)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	2	2	-	-	-	-	-	-	-	-	-	-
CO 2	3	3	-	-	- 1	1. 1.14	-	-	-	-	-	-
CO 3	3	3	-	- []	-	31-3	4 - 1	1 -	-	-	-	-
CO 4	3	3		-	-	-	-	-	-	-	-	-
CO 5	3	3	-		- 1			-	1-1	-	-	-

Assessment Pattern

	Continuous Assessi	ment Tests	
Bloom's Category	Test 1 (Marks)	Test 2 (Marks)	End Semester Examination (Marks)
Remember	10	10	15
Understand	10	10	15
Apply	30	30	70
Analyse			
Evaluate			
Create			

Mark distribution

CIE marks	ESE marks	ESE Duration
50	100	3 hours
		marks marks

Continuous Internal Evaluation Pattern:

Attendance : 10 marks
Continuous Assessment Test (2 numbers) : 25 marks
Assignment/Quiz/Course project : 15 marks

<u>End Semester Examination Pattern:</u> There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

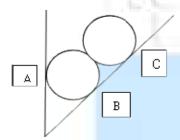
Course Level Assessment Questions:

Part A

Course Outcome 1 (CO1): (One question from each module to meet the course objective 1: To recall principles and theorems related to rigid body mechanics)

- 1. Explain D'Alembert's principle
- 2. Distinguish static and dynamic friction
- 3. State and explain perpendicular axis theorem

Course Outcome 2 (CO2) (One question from each module to meet the course objective 2: To identify and describe the components of system of forces acting on the rigid body)

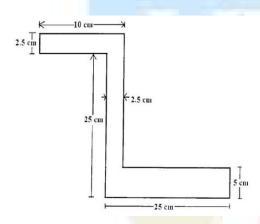

- 1. A simply supported beam AB of span 5 m is carrying point loads 5 kN, 3 kN and 2 kN at 1m, 3m and 4m respectively from support A. Calculate the support reaction at B.
- 2. A gymnast holding onto a bar, is suspended motionless in mid-air. The bar is supported by two ropes that attach to the ceiling. Diagram the forces acting on the combination of gymnast and bar
- 3. While you are riding your bike, you turn a corner following a circular arc. Illustrate the forces that act on your bike to keep you along the circular path?

Part B

All the questions under this section shall assess the learning levels corresponding to the course outcomes listed below.

CO 3	To apply the conditions of equilibrium to various practical problems involving different force system.
CO 4	To choose appropriate theorems, principles or formulae to solve problems of mechanics.
CO 5	To solve problems involving rigid bodies, applying the properties of distributed areas and masses

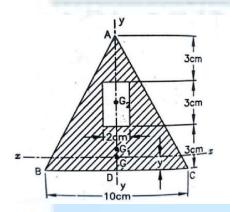
1. Two rollers each of weight 100 N are supported by an inclined plane and a vertical wall. Find the reaction at the points of contact A, B, C. Assume all the surfaces to be smooth.



Course outcome identifier	Description of course outcome	Learning level assessed	Marks allocated		
CO 3	To apply the conditions of equilibrium to various practical problems involving different force system.	Applying – (Sketch the free body diagram that represent equilibrium state of the body)	4		
CO 4	To choose appropriate theorems, principles or formulae to solve problems of mechanics.	Applying (Choose the equations and formulae required for calculation)	4		
CO 5	To solve problems involving rigid bodies, applying the properties of distributed areas and masses Applying (Solve the problem based on the descriptions given in CO3 and CO4)				
Total					

2. A cylindrical disc, 50 cm diameter and cm thickness, is in contact with a horizontal conveyor belts running at uniform speeds of 5 m/s. Assuming there is no slip at points of contact determine (i) angular velocity of disc (ii) Angular acceleration of disc if velocity of conveyor changes to 8 m/s. Also compute the moment acting about the axis of the disc in both cases.

Course outcome identifier	Description of course outcome	Learning level assessed	Marks allocated
CO 3	To apply the conditions of equilibrium to various practical problems involving different force system.	Applying – (Sketch the free body diagram that represent state of the body)	4
CO 4	To choose appropriate theorems, principles or formulae to solve problems of mechanics.	Applying (Choose the equations and formulae required for calculation)	4
CO 5	To solve problems involving rigid bodies, applying the properties of distributed areas and masses	Applying (Solve the problem based on the descriptions given in CO3 and CO4)	6
	Total		14


3. Determine the centroid of the given section

Course outcome identifier	Description of course outcome	Learning level assessed	Marks allocat ed
CO 3	To apply the conditions of equilibrium to various practical problems involving different force system.	Applying – (Illustrate the computation of centroid for the given geometrical shape)	4
CO 4	To choose appropriate theorems, principles or formulae to solve problems of mechanics.	Applying (Choose the equations and formulae required for calculation)	4
CO 5	To solve problems involving rigid bodies, applying the properties of distributed	Applying (Solve the problem based on the descriptions	6

	areas and masses	given in CO3 and CO4)	
Total			14

4. A rectangular hole is made in a triangular section as shown. Find moment of inertia about the section x-x passing through the CG of the section and parallel to BC.

Course outcome identifier	Description of course outcome	Learning level assessed	Marks allocated
CO 3	To apply the conditions of equilibrium to various practical problems involving different force system.	Applying – (Illustrate the computation of moment of inertia for the given geometrical shape)	4
CO 4	To choose appropriate theorems, principles or formulae to solve problems of mechanics.	Applying (Choose the equations and formulae required for calculation)	4
CO 5	To solve problems involving rigid bodies, applying the properties of distributed areas and masses	Applying (Solve the problem based on the descriptions given in CO3 and CO4)	6
	Total	1.7	14

Model Question Paper

QP CODE:		
		Reg No.:
	Name:_	
APJ ABDUL KALAM TECHNOLOGICAL	UNIVERSITY FIRST SEMES	TER B.TECH DEGREE EXAMINATION,
	MONTH & YEAR	
	CONTRACT TO THE	

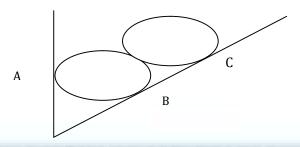
Course Code: EST 100

ENGINEERING MECHANICS

Max. Marks: 100 Duration: 3 hours

Part A

(Answer all questions; each question carries 3 marks)

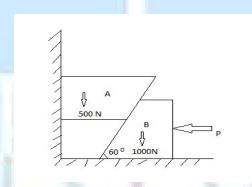

- 1. Explain D'Alembert's principle
- 2. Distinguish static and dynamic frictioni.
- 3. State and explain perpendicular axis theorem.
- 4. A simply supported beam AB of span 5 m is carrying point loads 5 kN, 3 kN and 2 kN at 1m, 3m and 4m respectively from support A. Calculate the support reaction at B.
- 5. A gymnast holding onto a bar, is suspended motionless in mid-air. The bar is supported by two ropes that attach to the ceiling. Diagram the forces acting on the combination of gymnast and bar
- 6. While you are riding your bike, you turn a corner following a circular arc. Illustrate the forces that act on your bike to keep you along the circular path?
- 7. Compare damped and undamped free vibrations.
- 8. State the equation of motion of a rotating rigid body, rotating about its fixed axis.
- 9. Illustrate the significance of instantaneous centre in the analysis of rigid body undergoing rotational motion.
- 10. Highlight the principles of mechanics applied in the evaluation of elastic collusion of rigid bodies.

PART B

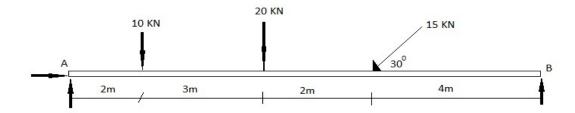
(Answer one full question from each module, each question carries 14 marks)

Module -I

11. Two identical rollers each of weight 100 N are supported by an inclined plane, making an angle of 30° with the vertical, and a vertical wall. Find the reaction at the points of contact A, B, C. Assume all the surfaces to be smooth. (14 marks)

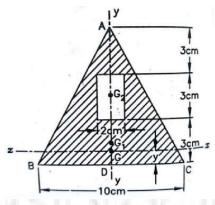


12. A string tied to a wall is made to pass over a pulley placed 2m away from it. A weight P is attached to the string such that the string stretches by 2m from the support on the wall to the location of attachment of weight. Determine the force P required to maintain 200 kg body in position for $\theta = 30^{\circ}$, The diameter of pulley B is negligible. (14 marks)

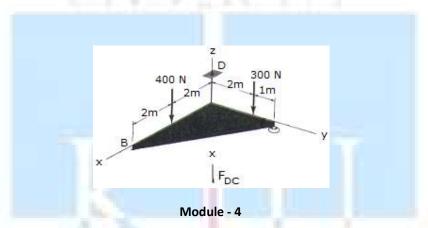

Module - 2

13. Two blocks A & B are resting against a wall and the floor as shown in figure below. Find the value of horizontal force P applied to the lower block that will hold the system in equilibrium. Coefficient of friction are: 0.25 at the floor, 0.3 at the wall and 0.2 between the blocks.

(14 marks)



14. A beam is hinged at A and roller supported at B. It is acted upon by loads as shown below. Find the reactions at A & B. (14 marks)



Module - 3

15. A rectangular hole is made in a triangular section as shown. Find moment of inertia about the section x-x passing through the CG of the section and parallel to BC. (14 marks)

16. Support A has ball and socket connection. Roller support at B prevents motion in the -z direction. Corner C is tied to D by a rope. The triangle is weightless. Determine the unknown force components acting at A, B, and C. (14 marks)

- 17. A cricket ball is thrown by a fielder from a height of 2m at an angle of 30° to the horizontal with an initial velocity of 20 m/s, hits the wickets at a height of 0.5 m from the ground. How far was the fielder from the wicket? (14 marks)
- 18. An engine of weight 500 kN pull a train weighing 1500 kN up an incline of 1 in 100. The train starts from rest and moves with constant acceleration against a resistance of 5 N/kN. It attains a maximum speed of 36 kmph in 1 km distance. Determine the tension in the coupling between train and engine and the traction force developed by the engine. (14marks)

Module - 5

- 19. A cylindrical disc, 50 cm diameter and 10 cm thickness having mass of 10 kg, is in contact with a horizontal conveyor belt running at uniform speeds of 5 m/s. Assuming there is no slip at points of contact determine (i) angular velocity of disc (ii) Angular acceleration of disc if velocity of conveyor changes to 8 m/s in 10 seconds. Also compute the moment acting about the axis of the disc in both cases. (14 marks)
- 20. A wheel rotating about fixed axis at 20 rpm is uniformly accelerated for 70 seconds during which time it makes 50 revolutions. Find the (i) angular velocity at the end of this interval and (ii) time required for the velocity to reach 100 revolutions per minute. (14 marks)

SYLLABUS

Module 1

Introduction to Engineering Mechanics-statics-basic principles of statics-Parallelogram law, equilibrium law, principles of superposition and transmissibility, law of action and reaction(review) free body diagrams.

Concurrent coplanar forces-composition and resolution of forces-resultant and equilibrium equations – methods of projections – methods of moments – Varignon's Theorem of moments.

Module 2

Friction – sliding friction - Coulomb's laws of friction – analysis of single bodies –wedges, ladder-analysis of connected bodies .

Parallel coplanar forces – couple - resultant of parallel forces – centre of parallel forces – equilibrium of parallel forces – Simple beam subject to concentrated vertical loads. General coplanar force system - resultant and equilibrium equations.

Module 3

Centroid of composite areas—moment of inertia-parallel axis and perpendicular axis theorems. Polar moment of inertia, radius of gyration, mass moment of inertia-ring, cylinder and disc.

Theorem of Pappus Guldinus(demonstration only)

Forces in space - vectorial representation of forces, moments and couples –resultant and equilibrium equations – concurrent forces in space (simple problems only)

Module 4

Dynamics – rectilinear translation - equations of kinematics(review)

kinetics – equation of motion – D'Alembert's principle. – motion on horizontal and inclined surfaces, motion of connected bodies. Impulse momentum equation and work energy equation (concepts only).

Curvilinear translation - equations of kinematics -projectile motion(review), kinetics - equation of motion. Moment of momentum and work energy equation (concepts only).

Module 5

Rotation – kinematics of rotation- equation of motion for a rigid body rotating about a fixed axis – rotation under a constant moment.

Plane motion of rigid body – instantaneous centre of rotation (concept only).

Simple harmonic motion – free vibration –degree of freedom- undamped free vibration of spring mass system-effect of damping(concept only)

Text Books

- 1. Timoshenko and Young, Engineering Mechanics, McGraw Hill Publishers
- 2. Shames, I. H., Engineering Mechanics Statics and Dynamics, Prentice Hall of India.
- 3. R. C. Hibbeler and Ashok Gupta, Engineering Mechanics, Vol. I statics, Vol II Dynamics, Pearson Education.

References

- 1. Merriam J. L and Kraige L. G., Engineering Mechanics Vols. 1 and 2, John Wiley.
- 2. Tayal A K, Engineering Mechanics Statics and Dynamics, Umesh Publications
- 3. Bhavikkatti, S.S., Engineering Mechanics, New Age International Publishers
- 4. F.P.Beer abd E.R.Johnston (2011), Vector Mechanics for Engineers, Vol.I-Statics, Vol.II-Dynamics, 9^{th} Ed, Tata McGraw Hill
- 5. Rajasekaran S and Sankarasubramanian G, Engineering Mechanics Statics and Dynamics, Vikas Publishing House Pvt Ltd.

Course Contents and Lecture Schedule:

Module	Topic	Course outcomes addressed	No. of Hours
1	Module 1		Total: 7
1.1	Introduction to engineering mechanics – introduction on statics and dynamics - Basic principles of statics – Parellogram law, equilibrium law – Superposition and transmissibility, law of action and reaction (review the topics)	CO1 and	1
1.2	Free body diagrams. Degree of freedom-types of supports and nature of reactions - exercises for free body diagram preparation — composition and resolution of forces, resultant and equilibrium equations (review the topics) - numerical exercises for illustration.	CO1 and CO2	1
1.3	Concurrent coplanar forces - analysis of concurrent forces -methods of projections - illustrative numerical exercise - teacher assisted problem solving.	CO1 and	1
1.4	Analysis of concurrent forces -methods of moment-Varignon's Theorem of Moments - illustrative numerical exercise— teacher assisted problem solving.	CO1 and	1
1.5	Analysis of concurrent force systems – extended problem solving - Session I.	CO3,CO4 and CO5	1
1.6	Analysis of concurrent force systems – extended problem solving - Session II – learning review quiz.	CO3,CO4 and CO5	1
1.7	Analysis of concurrent force systems – extended problem solving - Session III.	CO3,CO4 and CO5	1
2	Module 2		Total: 7
2.1	Friction – sliding friction - Coulomb's laws of friction – analysis of single bodies –illustrative examples on wedges and ladder-teacher	CO1 and	1

4	Module 4		Total: 7	
	equations for concurrent forces in space.			
	for concurrent forces in space – concurrent forces in space - 2 simple problems to illustrate the application of resultant and equilibrium			
3.7	Solution to practice problems - resultant and equilibrium equations	CO2 CO4		
3.6	Introduction to forces in space – vectorial representation of forces, moments and couples – simple problems to illustrate vector representations of forces, moments and couples to be done in class.	CO1,and CO2	1	
2.6	Mass moment of inertia of ring, cylinder and uniform disc. Theorem of Pappus Guldinus - Demonstration	CO2	1	
3.5	Polar moment of inertia, Radius of gyration.	CO1 and	1	
3.4	Solutions to practice problems — problems related to centroid and moment of inertia - problems for practice to be done by self.	CO3, CO4 and CO5	1	
3.3	Moment of inertia - perpendicular axis theorem - example for illustration to be given as hand out and discussion on the solved example.	CO1 and	1	
3.2	Moment of inertia- parallel axis theorem —examples for illustration - problems for practice to be done by self.	CO1 and	1	
3.1	Centroid of simple and regular geometrical shapes – centroid of figures in combination - composite areas- examples for illustration – problems for practice to be done by self.	CO1 and	1	
3	Module 3		Total: 7	
	evaluate learning level.	and CO5	_	
2.7	illustrative examples General coplanar force system - Extended problem solving - Quiz to	and CO5	1	
2.6	General coplanar force system-resultant and equilibrium equations -	CO3, CO4	1	
2.5	General coplanar force system - resultant and equilibrium equations - illustrative examples- teacher assisted problem solving.	CO1 and	1	
2.4	Parallel coplanar forces – couple - resultant of parallel forces – centre of parallel forces – equilibrium of parallel forces – Simple beam subject to concentrated vertical loads.	CO1 and CO2	1	
2.3	Problems on friction-extended problem solving	CO3,C04 and CO5	1	
2.2	Problems on friction - analysis of connected bodies. illustrative numerical exercise—teacher assisted problem solving.	CO3, CO4 and CO5	1	
	assisted problem solving tutorials using problems from wedges and ladder.			

4.1	Introduction to dynamics — review of rectilinear translation - equations of kinematics — problems to review the concepts — additional problems involving extended application as exercises .	CO1 and	1
4.2	Solutions to exercises with necessary explanation given as hand out – introduction to kinetics – equation of motion – D'Alembert's principle – illustration of the concepts using one numerical exercise from motion on horizontal and inclined surfaces.	CO1 and CO2	1
4.3	Motion of connected bodies - example for illustration to be given as hand out and discussion on the solved example – problems for practice to be done by self.	CO3, CO4 and CO5	1
4.4	Motion of connected bodies-extended problem solving.	CO3, CO4 & CO5	1
4.5	Curvilinear translation - Review of kinematics -projectile motion - simple problems to review the concepts - introduction to kinetics - equation of motion - illustration of the concepts using numerical exercises.	CO3, CO4 & CO5	1
4.6	Extended problem solving – rectilinear and curvilinear translation.	CO3, CO4 & CO5	1
4.7	Concepts on Impulse momentum equation and work energy equation (rectilinear translation – discussions to bring out difference between elastic and inelastic collusions). Concepts on Moment of momentum and work energy equation (curvilinear translation).	CO1 and CO2	1
5	Module 5		Total: 7
5.1	Rotation – kinematics of rotation- equation of motion for a rigid body rotating about a fixed axis – simple problems for illustration.	CO1 and	1
5.2	Rotation under a constant moment – teacher assisted problem solving.	CO3,CO4 and CO5	1
5.3	Rotation under a constant moment - extended problem solving.	CO3, CO4 and CO5	1
5.4	Plane motion of rigid body- instantaneous centre of rotation (concept only).	CO1 and	1
5.5	Introduction to harmonic oscillation –free vibrations - simple harmonic motion – differential equation and solution. Degree of freedom – examples of single degree of freedom (SDOF) systems – Idealisation of mechanical systems as spring-mass systems (concept only).	CO1 and CO2	1

	SDOF spring mass system -equation of motion - undamped free			1
	vibration response - concept of natural frequency.	CO1 a	nd	
5.6	Free vibration response due to initial conditions.	CO2		
	Simple problems on determination of natural frequency and free			
	vibration response to test the understanding level.			
F 7	Free vibration analysis of SDOF spring-mass systems – Problem solving	CO1and		1
5.7	Effect of damping on free vibration response (concept only).	CO2		
	A PART OF BUILDING BY A HOUSE			

CYT 100	ENGINEERING CHEMISTRY	CATEGORY	L	Т	Р	CREDIT	YEAR OF INTRODUCTION
		BSC	3	1	0	4	2019

Preamble: To enable the students to acquire knowledge in the concepts of chemistry for engineering applications and to familiarize the students with different application oriented topics like spectroscopy, electrochemistry, instrumental methods etc. Also familiarize the students with topics like mechanism of corrosion, corrosion prevention methods, SEM, stereochemistry, polymers, desalination etc., which enable them to develop abilities and skills that are relevant to the study and practice of chemistry.

Prerequisite: Concepts of chemistry introduced at the plus two levels in schools

Course outcomes: After the completion of the course the students will be able to

CO 1	Apply the basic concepts of electrochemistry and corrosion to explore its possible
	applications in various engineering fields.
CO 2	Understand various spectroscopic techniques like UV-Visible, IR, NMR and its
	applications.
CO 3	Apply the knowledge of analytical method for characterizing a chemical mixture or a
	compound. Understand the basic concept of SEM for surface characterisation of
	nanomaterials.
CO 4	Learn about the basics of stereochemistry and its application. Apply the knowledge of
	conducting polymers and advanced polymers in engineering.
CO 5	Study various types of water treatment methods to develop skills for treating
	wastewater.

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	РО	РО	РО
				- 0.0		1.66				10	11	12
CO 1	1	2	1									
CO 2	1	1		1	2							
CO 3	1	1		1	2	100						
CO 4	2	1										
CO 5	1			1			3					

Assessment Pattern

Bloom's Category	Continuous Asse	essment Tests	End Semester Examination	
	1	2		
Remember	15	15	30	
Understand	25	25	50	
Apply	10	10	20	
Analyse	0.000	114 1531	K-4 TOY I	
Evaluate	2.151111	911 Ko	er recovi	
Create				

End Semester Examination Pattern: There will be two parts- Part A and Part B. Part A contains 10 questions (2 questions from each module), having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module, of which student should answer any one. Each question can have maximum 2 subdivisions and carries 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO 1):

1. What is calomel electrode? Give the reduction reaction (3 Marks)

2. List three important advantages of potentiometric titration (3 Marks)

3. (a) Explain how electroless plating copper and nickel are carried out (10 Marks)

(b) Calculate the emf of the following cell at 30° C, Z n / Zn $^{2+}$ (0.1M) // Ag $^{+}$ (0.01M) // Ag.

Given $E^0 Zn^{2+}/Zn = -0.76 V$, $E^0 Ag^+/Ag = 0.8 V$. (4 Marks)

Course Outcome 2 (CO 2)

1. State Beer Lambert's law (3 Marks)

2. List the important applications of IR spectroscopy (3 Marks)

3. (a) What is Chemical shift? What are factors affecting Chemical shift? How ¹H NMR spectrum of CH₃COCH₂Cl interpreted using the concept of chemical shift. (10 Marks)

(b) Calculate the force constant of HF molecule, if it shows IR absorption at 4138 cm⁻¹. Given that atomic masses of hydrogen and fluorine are 1u and 19u respectively. (4 Marks)

Course Outcome 3 (CO 3):

1. Distinguish between TGA and DTA (3 Marks)

2. Give two differences between GSC and GLC (3 Marks)

3. (a) Explain the principle, instrumentation and procedure of HPLC	(10 Marks)
(b) Interpret TGA of CaC ₂ O ₄ . H ₂ O	(4 Marks)
Course Outcome 4 (CO 4):	
1. Explain the geometrical isomerism in double bonds	(3 Marks)
2. What are the rules of assigning R-S notation?	(3 Marks)
3. (a) What are conducting polymers? How it is classified? Give the property of the property o	reparation of polyaniline (10 Marks)
(b) Draw the stereoisomers possible for CH ₃ -(CHOH) ₂ -COOH	(4 Marks)
Course Outcome 5 (CO 5):	
1. What is degree of hardness?	(3 Marks)
2. Define BOD and COD	(3 Marks)
3. (a) Explain the EDTA estimation of hardness	(10 Marks)
MODEL QUESTION PAPER	1
	Total Pages:
Reg No.: Name:	
APJ ABDUL KALAM TECHNOLOGICAL UNI FIRST SEMESTER B.TECH DEGREE EXAMI	
Course Code: CYT100,	VALION
Course Name: ENGINEERING CHEMISTRY	
Max. Marks: 100	Duration: 3 Hours
PART A	
Answer all questions, each carries 3 me	arks Marks
1 What is potentiometric titration? How the end point is det	ermined graphically? (3)
What is Galvanic series? How is it different from electroch	emical series? (3)
Which of the following molecules can give IR absorption?	Give reason? (3)
(a) O_2 (b) H_2O (c) N_2 (d) HCI	dan 2 Circa managa (2)
Which of the following molecules show UV-Visible absorpt (a) Ethane (b) Butadiene (c) Benzene	cion? Give reason. (3)

- 5 What are the visualization techniques used in TLC? (3)
- 6 Write the three important applications of nanomaterials. (3)
- 7 Draw the Fischer projection formula and find R-S notation of (3)

- 8 Write the structure of a) Polypyrroleb) Kevlar. (3
- 9 What is break point chlorination? (3)
- 10 What is reverse osmosis? (3)

PART B

Answer any one full question from each module, each question carries 14 marks Module 1

- a) Give the construction of Li-ion cell. Give the reactions that take place at the (10) electrodes during charging and discharging. What happens to anodic material when the cell is 100% charged.
 - b) Calculate the standard electrode potential of Cu, if its electrode potential at 25 °C (4) is 0.296 V and the concentration of Cu²⁺ is 0.015 M.

OR

- 12 a) Explain the mechanism of electrochemical corrosion of iron in oxygen rich and oxygen (10) deficient acidic and basic environments.
 - b) Given below are reduction potentials of some species

(4)

$$MnO_4^{-1} + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O; E^0 = +1.51 \text{ V}$$

 $Cl_2 + 2e \rightarrow 2Cl^-; E^0 = +1.36 \text{ V}$

$$S_2O_8^{2^-} + 2e \rightarrow 2SO_4^{2^-}$$
; $E^0 = +1.98 \text{ V}$

Use the above data to examine whether the acids, dil. HCl and dil. H₂SO₄, can be used to provide acid medium in redox titrations involving KMnO₄.

Module 2

- a) What is spin-spin splitting? Draw the NMR spectrum of (i) CH₃ CH₂CH₂ Br (ii) (10) CH₃CH(Br)CH₃ Explain how NMR spectrum can be used to identify the two isomers.
 - b) A dye solution of concentration 0.08M shows absorbance of 0.012 at 600 nm; while a (4) test solution of same dye shows absorbance of 0.084 under same conditions. Find the concentration of the test solution.

OR

- 14 a) Explain the basic principle of UV-Visible spectroscopy. What are the possible (10) electronic transitions? Explain with examples.
 - b) Sketch the vibrational modes of CO₂ and H₂O. Which of them are IR active? (4)

Module 3

- Explain the principle, instrumentation and procedure involved in gas chromatography. 15 a) (4)
 - Explain the DTA of CaC₂O₄.H₂O with a neat sketch. b)

- Explain the various chemical methods used for the synthesis of nanomaterial (10)16 a)
 - b) How TGA is used to analyse the thermal stability of polymers?

Module 4

What are conformers? Draw thecis and transisomers of 1, 3-dimethylcylohexane. (10) 17 a) Which conformer (chair form) is more stable in each case?

OR

b) What is ABS? Give properties and applications.

(4)

(4)

(10)

(4)

- 18 Explain the various structural isomers with suitable example. a)
 - b) What is OLED? Draw a labelled diagram.

Module 5

- 19 What are ion exchange resins? Explain ion exchange process for removal of hardness (10) a) of water? How exhausted resins are regenerated?
 - b) 50 mL sewage water is diluted to 2000 mL with dilution water; the initial dissolved (4) oxygen was 7.7 ppm. The dissolved oxygen level after 5 days of incubation was 2.4 ppm. Find the BOD of the sewage.

OR

- What are the different steps in sewage treatment? Give the flow diagram. Explain the (10) 20 a) working of trickling filter.
 - b) Calculate the temporary and permanent hardness of a water sample which contains (4) $[Ca^{2+}] = 160 \text{ mg/L}, [Mg^{2+}] = 192 \text{ mg/L} \text{ and } [HCO_3^-] = 122 \text{ mg/L}.$

Syllabus

Module 1

Electrochemistry and Corrosion

Introduction - Differences between electrolytic and electrochemical cells - Daniel cell - redox reactions - cell representation. Different types of electrodes (brief) - Reference electrodes - SHE -Calomel electrode - Glass Electrode - Construction and Working. Single electrode potential definition - Helmholtz electrical double layer -Determination of E⁰ using calomel electrode.Determination of pH using glass electrode.Electrochemical series and its applications. Free energy and EMF - Nernst Equation - Derivation - single electrode and cell (Numericals) -Application -Variation of emf with temperature. Potentiometric titration - Introduction -Redox titration only.Lithiumion cell - construction and working.Conductivity- Measurement of conductivity of a solution (Numericals).

Corrosion-Electrochemicalcorrosion - mechanism. Galvanic series- cathodic protection - electroless plating -Copper and Nickel plating.

Module 2

Spectroscopic Techniques and Applications

Introduction- Types of spectrum - electromagnetic spectrum - molecular energy levels - Beer Lambert's law (Numericals). UV-Visible Spectroscopy — Principle - Types of electronic transitions - Energy level diagram of ethane, butadiene, benzene and hexatriene. Instrumentation of UV-Visible spectrometer and applications.IR-Spectroscopy — Principle - Number of vibrational modes - Vibrational energy states of a diatomic molecule and -Determination of force constant of diatomic molecule (Numericals) —Applications. ¹H NMR spectroscopy — Principle - Relation between field strength and frequency - chemical shift - spin-spin splitting (spectral problems) - coupling constant (definition) - applications of NMR- including MRI (brief).

Module 3

Instrumental Methods and Nanomaterials

Thermal analysis -TGA- Principle, instrumentation (block diagram) and applications -TGA of $CaC_2O_4.H_2O$ and polymers. DTA-Principle, instrumentation (block diagram) and applications - DTA of $CaC_2O_4.H_2O$. Chromatographic methods - Basic principles and applications of column and TLC-Retention factor. GC and HPLC-Principle, instrumentation (block diagram) - retention time and applications.

Nanomaterials - Definition - Classification - Chemical methods of preparation - Hydrolysis and Reduction - Applications of nanomaterials - Surface characterisation -SEM — Principle and instrumentation (block diagram).

Module 4

Stereochemistry and Polymer Chemistry

Isomerism-Structural, chain, position, functional, tautomerism and matamerism - Definition with examples - Representation of 3D structures-Newman, Sawhorse, Wedge and Fischer projection of substituted methane and ethane. Stereoisomerism - Geometrical isomerism in double bonds and cycloalkanes (cis-trans and E-Z notations). R-S Notation — Rules and examples - Optical isomerism, Chirality, Enantiomers and Diastereoisomers-Definition with examples.Conformational analysis of ethane, butane, cyclohexane, mono and di methyl substituted cyclohexane.

Copolymers - Definition - Types - Random, Alternating, Block and Graft copolymers - ABS - preparation, properties and applications. Kevlar-preparation, properties and applications. Conducting polymers - Doping -Polyaniline and Polypyrrole - preparation properties and applications. OLED - Principle, construction and advantages.

Module 5

Water Chemistry and Sewage Water Treatment

Water characteristics - Hardness - Types of hardness- Temporary and Permanent - Disadvantages of hard water -Units of hardness- ppm and mg/L -Degree of hardness (Numericals) - Estimation of

hardness-EDTA method (Numericals). Water softening methods-Ion exchange process-Principle, procedure and advantages. Reverse osmosis – principle, process and advantages. Municipal water treatment (brief) - Disinfection methods - chlorination, ozone and UV irradiation.

Dissolved oxygen (DO) -Estimation (only brief procedure-Winkler's method), BOD and COD-definition, estimation (only brief procedure) and significance (Numericals). Sewage water treatment - Primary, Secondary and Tertiary - Flow diagram -Trickling filter and UASB process.

Text Books

- 1. B. L. Tembe, Kamaluddin, M. S. Krishnan, "Engineering Chemistry (NPTEL Web-book)", 2018.
- 2. P. W. Atkins, "Physical Chemistry", Oxford University Press, 10th edn., 2014.

Reference Books

- 1. C. N. Banwell, "Fundamentals of Molecular Spectroscopy", McGraw-Hill, 4thedn., 1995.
- 2. Donald L. Pavia, "Introduction to Spectroscopy", Cengage Learning India Pvt. Ltd., 2015.
- 3. B. R. Puri, L. R. Sharma, M. S. Pathania, "Principles of Physical Chemistry", Vishal Publishing Co., 47th Edition, 2017.
- 4. H. H. Willard, L. L. Merritt, "Instrumental Methods of Analysis", CBS Publishers, 7th Edition, 2005.
- 5. Ernest L. Eliel, Samuel H. Wilen, "Stereo-chemistry of Organic Compounds", WILEY, 2008.
- 6. Raymond B. Seymour, Charles E. Carraher, "Polymer Chemistry: An Introduction", Marcel Dekker Inc; 4th Revised Edition, 1996.
- 7. MuhammedArif, Annette Fernandez, Kavitha P. Nair "Engineering Chemistry", Owl Books, 2019.
- 8. Ahad J., "Engineering Chemistry", Jai Publication, 2019.
- 9. Roy K. Varghese, "Engineering Chemistry", Crownplus Publishers, 2019.
- 10. Soney C. George, RinoLaly Jose, "Text Book of Engineering Chemistry", S. Chand & Company Pvt Ltd, 2019.

Course Contents and Lecture Schedule

No	Topic	No. of Lectures (hrs)
1	Electrochemistry and Corrosion	9
1.1	Introduction - Differences between electrolytic and electrochemical cells- Daniel cell - redox reactions - cell representation. Different types of electrodes (brief) - Reference electrodes- SHE - Calomel electrode - Glass Electrode - Construction and Working.	2
1.2	Single electrode potential – definition - Helmholtz electrical double layer - Determination of E ⁰ using calomel electrode. Determination of pH using glass electrode. Electrochemical series and its applications. Free energy and EMF - Nernst Equation – Derivation - single electrode and cell (Numericals) - Application - Variation of emf with temperature.	3
1.3	Potentiometric titration - Introduction -Redox titration only. Lithiumion cell - construction and working. Conductivity- Measurement of conductivity of a solution (Numericals).	2
1.4	Corrosion-Electrochemicalcorrosion – mechanism. Galvanic series- cathodic protection - electroless plating –Copper and Nickel plating.	2
2	Spectroscopic Techniques and Applications	9
2.1	Introduction- Types of spectrum - electromagnetic spectrum - molecular energy levels - Beer Lambert's law (Numericals).	2
2.2	UV-Visible Spectroscopy – Principle - Types of electronic transitions - Energy level diagram of ethane, butadiene, benzene and hexatriene. Instrumentation of UV-Visible spectrometer and applications.	2
2.3	IR-Spectroscopy – Principle - Number of vibrational modes -Vibrational energy states of a diatomic molecule and -Determination of force constant of diatomic molecule (Numericals) –Applications.	2
2.4	¹ H NMR spectroscopy – Principle - Relation between field strength and frequency - chemical shift - spin-spin splitting (spectral problems) - coupling constant (definition) - applications of NMR- including MRI (brief).	3
3	Instrumental Methods and Nanomaterials	9
3.1	Thermal analysis –TGA- Principle, instrumentation (block diagram) and applications – TGA of CaC_2O_4 . H_2O and polymers. DTA-Principle, instrumentation (block diagram) and applications - DTA of CaC_2O_4 . H_2O .	2

3.2	Chromatographic methods - Basic principles and applications of column and TLC-Retention factor.	2
3.3	GC and HPLC-Principle, instrumentation (block diagram) - retention time and applications.	2
3.4	Nanomaterials - Definition - Classification - Chemical methods of preparation - Hydrolysis and Reduction - Applications of nanomaterials - Surface characterisation -SEM — Principle and instrumentation (block diagram).	3
4	Stereochemistry and Polymer Chemistry	9
4.1	Isomerism-Structural, chain, position, functional, tautomerism and matamerism - Definition with examples - Representation of 3D structures-Newman, Sawhorse, Wedge and Fischer projection of substituted methane and ethane. Stereoisomerism - Geometrical isomerism in double bonds and cycloalkanes (cistrans and E-Z notations).	2
4.2	R-S Notation – Rules and examples - Optical isomerism, Chirality, Enantiomers and Diastereoisomers-Definition with examples.	1
4.3	Conformational analysis of ethane, butane, cyclohexane, mono and di methyl substituted cyclohexane.	2
4.4	Copolymers - Definition - Types - Random, Alternating, Block and Graft copolymers - ABS - preparation, properties and applications. Kevlar-preparation, properties and applications. Conducting polymers - Doping -Polyaniline and Polypyrrole - preparation properties and applications. OLED - Principle, construction and advantages.	4
5	Water Chemistry and Sewage Water Treatment	9
5.1	Water characteristics - Hardness - Types of hardness- Temporary and Permanent - Disadvantages of hard water -Units of hardness- ppm and mg/L -Degree of hardness (Numericals) - Estimation of hardness-EDTA method (Numericals). Water softening methods-lon exchange process-Principle, procedure and advantages. Reverse osmosis – principle, process and advantages.	3
5.2	Municipal water treatment (brief) - Disinfection methods - chlorination, ozone andUV irradiation.	2
5.3	Dissolved oxygen (DO) -Estimation (only brief procedure-Winkler's method), BOD and COD-definition, estimation (only brief procedure) and significance (Numericals).	2
5.4	Sewage water treatment - Primary, Secondary and Tertiary - Flow diagram - Trickling filter and UASB process.	2

PHT	ENGINEERING PHYSICS A	CATEGORY	L	T	Р	CREDIT	YEAR OF
100	(FOR CIRCUIT BRANCHES)						INTRODUCTION
		BSC	3	1	0	4	2019

Preamble: The aim of the Engineering Physics Program is to offer students a solid background in the fundamentals of Physics and to impart that knowledge in engineering disciplines. The program is designed to develop scientific attitudes and enable the students to correlate the concepts of Physics with the core programmes

Prerequisite: Higher secondary level Physics, Mathematical course on vector calculus, differential equations and linear algebra

Course Outcomes: After the completion of the course the student will be able to

CO 1	Compute the quantitative aspects of waves and oscillations in engineering systems.
CO 2	Apply the interaction of light with matter through interference, diffraction and identify
	these phenomena in different natural optical processes and optical instruments.
CO 3	Analyze the behaviour of matter in the atomic and subatomic level through the principles of
	quantum mechanics to perceive the microscopic processes in electronic devices.
CO 4	Classify the properties of magnetic materials and apply vector calculus to static magnetic
	fields and use Maxwell's equations to diverse engineering problems
CO 5	Analyze the principles behind various superconducting applications, explain the working of
	solid state lighting devices and fibre optic communication system
l .	

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	2						1	2			1
CO 2	3	2						1	2			1
CO 3	3	2						1	2			1
CO 4	3	1				2000		1	2			1
CO 5	3	1						1	2			1

Assessment Pattern

	Continuous Asse	essment Tests			
Bloom's Category	Test 1 (Marks)	Test 2 (Marks)	End Semester Examination (Marks)		
Remember	15	15	30		
Understand	25	25	50		
Apply	10	10	20		

Analyse		
Evaluate		
Create		

Mark distribution

Total Marks	CIE marks	ESE marks	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks
Continuous Assessment Test (2 numbers) : 25 marks
Assignment/Quiz/Course project : 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Explain the effect of damping force on oscillators.
- 2. Distinguish between transverse and longitudinal waves.
- 3. (a) Derive an expression for the fundamental frequency of transverse vibration in a stretched string.
 - (b) Calculate the fundamental frequency of a string of length 2 m weighing 6 g kept stretched by a load of 600 kg.

Course Outcome 2 (CO2):

- 1. Explain colours in thin films.
- 2. Distinguish between Fresnel and Fraunhofer diffraction.
- 3. (a) Explain the formation of Newton's rings and obtain the expression for radii of bright and dark rings in reflected system. Also explain how it is used to determine the wavelength of a monochromatic source of light.
 - (b) A liquid of refractive index μ is introduced between the lens and glass plate.

What happens to the fringe system? Justify your answer.

Course Outcome 3 (CO3):

- 1. Give the physical significance of wave function?
- 2. What are excitons?
- 3. (a) Solve Schrodinger equation for a particle in a one dimensional box and obtain its energy eigen values and normalised wave functions.
 - (b) Calculate the first three energy values of an electron in a one dimensional box of width 1 A⁰ in electron volt.

Course Outcome 4 (CO4):

- 1. Compare displacement current and conduction current.
- 2. Mention any four properties of ferro magnetic materials.
- 3. (a) Starting from Maxwell's equations, derive the free space electromagnetic wave equation and show that velocity of electromagnetic wave is $1/(\mu_0 \epsilon_0)^{\frac{1}{2}}$
 - (b) An electromagnetic wave is described by E = 100 exp $8\pi i [10^{-14} t (10^{-6} z / 3)] V/m$. Find the direction of propagation of the wave, speed of the wave and magnetic flux density in the wave.

Course Outcome 5 (CO5):

- 1. Explain the working of a solar cell.
- 2. Distinguish between Type I and Type II super conductors.
- 3. (a) Define numerical aperture and derive an expression for it.
 - (b) Explain the working of intensity modulated fibre optic sensor.

Model Question paper

QP CODE:	PAGES:3
Reg No:	
Name :	
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTE MONTH & YEAR Course Code: PHT 100 Course Name: Engineering Physic	ICAL
Max. Marks: 100	Duration: 3 Hours
PART A	
Answer all Questions. Each question carri	ies 3 Marks
Compare electrical and mechanical oscillators	
2. Distinguish between longitudinal and transverse waves	
3. Write a short note on antireflection coating.	
4. Diffraction of light is not as evident in daily experience as that o	f sound waves. Give reason.
5. State and explain Heisenberg's Uncertainty principle. With the h	nelp of it explain natural
line broadening.	
6. Explain surface to volume ratio of nanomaterials.	
7. State Faraday's laws of electromagnetic induction.	
8. Compare displacement current and conduction current	
9. List four important applications of superconductors.	
10. Give the working principle of LED.	(10x3=30)

PART B

Answer any one full question from each module. Each question carries 14 Marks

Module 1

- 11. (a) Derive the differential equation of damped harmonic oscillator and deduce its solution. Discuss the cases of over damped, critically damped and under damped cases. (10)
 - (b) The frequency of a tuning fork is 500 Hz and its Q factor is 7×10^4 . Find the relaxation time. Also calculate the time after which its energy becomes 1/10 of its initial undamped value.(4)
- 12. (a) Derive an expression for the velocity of propagation of a transverse wave in a stretched string. Deduce laws of transverse vibrations. (10)
- (b) The equation of transverse vibration of a stretched string is given by y =0.00327 sin (72.1x-2.72t)m, in which the numerical constants are in S.I units. Evaluate (i) Amplitude (ii) Wavelength (iii) Frequency and (iv) Velocity of the wave.

Module 2

- 13.(a)Explain the formation of Newton's rings and show that the radius of dark ring is proportional to the square root of natural numbers. How can we use Newton's rings experiment to determine the refractive index of a liquid. (10)
 - (b) Two pieces of plane glass are placed together with a piece of paper between two at one end. Find the angle of the wedge in seconds if the film is viewed with a monochromatic light of wavelength 4800\AA . Given $\beta = 0.0555$ cm.
- 14. (a) Explain the diffraction due to a plane transmission grating. Obtain the grating equation. (10)
 - (b) A grating has 6000 lines per cm. Find the angular separation of the two yellow lines of mercury of wavelengths 577 nm and 579 nm in the second order. (4)

Module 3

- 15.(a) Derive time dependent and independent Schrodinger equations.
 - (b) An electron is confined to one dimensional potential box of length 2Å. Calculate the energies corresponding to the first and second quantum states in eV. (4)

(10)

- 16.(a) Classify nanomaterials based on dimensionality of quantum confinement and explain the following nanostructures. (i) nano sheets (ii) nano wires (iii) quantum dots. (10)
 - (b) Find the de Broglie wavelength of electron whose kinetic energy is 15 eV. (4)

Module 4

17.(a) State Poynting's Theorem. Calculate the value of Poynting vector at the surface of the sun if the power radiated by the sun is 3.8×10^{26} W and its radius is 7×10^{8} m. (5)

(b) Distinguish between paramagnetic, diamagnetic and ferromagnetic materials.
(9)
18.(a) Starting from Maxwell's Equations, derive electromagnetic wave equations in free space.
(10)
(b) If the magnitude of **H** in a plane wave is 1 A/m, find the magnitude of **E** in free space.
(4)

Module 5

- 19.(a) Show that superconductors are perfect diamagnets. Distinguish between Type I and
 - Type II superconductors with suitable examples.

(10)

(b) Write a short note on high temperature superconductors.

(4)

- 20.(a) Define numerical aperture of an optic fibre and derive an expression for the NA of a step index fibre with a neat diagram. (10)
 - (b) Calculate the numerical aperture and acceptance angle of a fibre with a core refractive index of 1.54 and a cladding refractive index of 1.50 when the fibre is inside water of refractive index 1.33. (4) (14x5=70)

Syllabus

ENGINEERING PHYSICS A (FOR CIRCUIT BRANCHES)

Module 1

Oscillations and Waves

Harmonic oscillations, Damped harmonic motion-Derivation of differential equation and its solution, Over damped, Critically damped and Under damped Cases, Quality factor-Expression, Forced oscillations-Differential Equation-Derivation of expressions for amplitude and phase of forced oscillations, Amplitude Resonance-Expression for Resonant frequency, Quality factor and Sharpness of Resonance, Electrical analogy of mechanical oscillators

Wave motion- Derivation of one dimensional wave equation and its solution, Three dimensional wave equation and its solution (no derivation), Distinction between transverse and longitudinal waves, Transverse vibration in a stretched string, Statement of laws of vibration

Module 2

Wave Optics

Interference of light-Principle of superposition of waves, Theory of thin films - Cosine law (Reflected system), Derivation of the conditions of constructive and destructive Interference, Interference due to wedge shaped films -Determination of thickness and test for optical planeness, Newton's rings - Measurement of wavelength and refractive index, Antireflection coatings

Diffraction of light, Fresnel and Fraunhofer classes of diffraction, Diffraction grating-Grating equation, Rayleigh criterion for limit of resolution, Resolving and Dispersive power of a grating with expression (no derivation)

Module 3

Quantum Mechanics & Nanotechnology

Introduction for the need of Quantum mechanics, Wave nature of Particles, Uncertainty principle, Applications-Absence of electrons inside a nucleus and Natural line broadening mechanism, Formulation of time dependent and independent Schrodinger wave equations-Physical meaning of wave function, Particle in a one dimensional box- Derivation for normalised wave function and energy eigen values, Quantum Mechanical Tunnelling (Qualitative)

Introduction to nanoscience and technology, Increase in surface to volume ratio for nanomaterials, Quantum confinement in one dimension, two dimension and three dimension-Nano sheets, Nano wires and Quantum dots, Properties of nanomaterials-mechanical, electrical and optical, Applications of nanotechnology (qualitative ideas)

Module 4

Magnetism & Electro Magnetic Theory

Magnetic field and Magnetic flux density, Gauss's law for Magnetic flux density, Ampere's Circuital law, Faraday's law in terms of EMF produced by changing magnetic flux, Magnetic permeability and susceptibility, Classification of magnetic materials-para, dia and ferromagnetic materials

Fundamentals of vector calculus, concept of divergence, gradient and curl along with physical significance, Line, Surface and Volume integrals, Gauss divergence theorem & Stokes' theorem, Equation of continuity, Derivation of Maxwell's equations in vacuum, Comparison of displacement current with conduction current. Electromagnetic waves, Velocity of Electromagnetic waves in free space, Flow of energy and Poynting's vector (no derivation)

Module 5

Superconductivity & Photonics

Superconducting phenomena, Meissner effect and perfect diamagnetism, Types of superconductors-Type I and Type II, BCS Theory (Qualitative), High temperature superconductors-Applications of super conductivity

Introduction to photonics-Photonic devices-Light Emitting Diode, Photo detectors -Junction and PIN photodiodes, Solar cells-I-V Characteristics, Optic fibre-Principle of propagation of light, Types of fibres-Step index and Graded index fibres, Numerical aperture —Derivation, Fibre optic communication system (block diagram), Industrial, Medical and Technological applications of optical fibre, Fibre optic sensors-Intensity Modulated and Phase modulated sensors.

Text Books

- M.N.Avadhanulu, P.G.Kshirsagar, TVS Arun Murthy "A Text book of Engineering Physics", S.Chand &Co., Revised Edition 2019
- 2. H.K.Malik, A.K. Singh, "Engineering Physics" McGraw Hill Education, Second Edition 2017

Reference Books

- 1. Arthur Beiser, "Concepts of Modern Physics", Tata McGraw Hill Publications, 6th Edition 2003
- 2. D.K. Bhattacharya, Poonam Tandon, "Engineering Physics", Oxford University Press, 2015
- 3. Md.N.Khan & S.Panigrahi "Principles of Engineering Physics 1&2", Cambridge University Press, 2016
- 4. Aruldhas G., "Engineering Physics", PHI Pvt. Ltd., 2015
- 5. Ajoy Ghatak, "Optics", Mc Graw Hill Education, Sixth Edition, 2017
- 6. T. Pradeep, "Nano:The Essentials", McGraw Hill India Ltd, 2007
- 7. Halliday, Resnick, Walker, "Fundamentals of Physics", John Wiley & Sons.Inc, 2001
- 8. David J Griffiths, "Introduction to Electrodynamics", Addison-Wesley publishing, 3rd Edition,
- **9.** Premlet B., "Advanced Engineering Physics", Phasor Books,10th edition,2017
- **10.** I. Dominic and. A. Nahari, "A Text Book of Engineering physics", Owl Books Publishers, Revised edition, 2016

Course Contents and Lecture Schedule

No	Topic	No. of Lectures
1	Oscillations and Waves (9 hours)	
1.1	Harmonic oscillations, Damped harmonic motion-Derivation of differential equation and its solution, Over damped, Critically damped and Under damped Cases, Quality factor-Expression	2 hrs
1.2	Forced oscillations-Differential Equation-Derivation of expressions for amplitude and phase of forced oscillations, Amplitude Resonance-Expression for Resonant frequency, Quality factor and Sharpness of Resonance, Electrical analogy of mechanical oscillators	3hrs
1.3	Wave motion- Derivation of one dimensional wave equation and its solution, Three dimensional wave equation and its solution (no derivation)	2 hrs
2	Distinction between transverse and longitudinal waves. Transverse vibration in a stretched string, Statement of laws of vibration Wave Optics (9 hours)	2 hrs
2.1	Interference of light-Principle of superposition of waves, Theory of thin films - Cosine law (Reflected system), Derivation of the conditions of constructive and destructive Interference	2 hrs
2.2	Interference due to wedge shaped films -Determination of thickness and test for optical planeness, Newton's rings - Measurement of wavelength and refractive index, Antireflection coatings	4 hr
2.3	Diffraction of light, Fresnel and Fraunhofer classes of diffraction, Diffraction grating-Grating equation	2 hrs
2.4	Rayleigh criterion for limit of resolution, Resolving and Dispersive power of a grating with expression (no derivation)	1 hr
3	Quantum Mechanics &Nanotechnology (9hours)	
3.1	Introduction for the need of Quantum mechanics, Wave nature of Particles, Uncertainty principle, Applications-Absence of electrons inside a nucleus and Natural line broadening mechanism	2 hrs
3.2	Formulation of time dependent and independent Schrodinger wave equations-Physical Meaning of wave function, Particle in a one dimensional box- Derivation for normalised wave function and energy eigen values, Quantum Mechanical Tunnelling (Qualitative)	4 hrs
3.3	Introduction to nanoscience and technology, Increase in surface to volume ratio for nanomaterials, Quantum confinement in one dimension, two dimension and three dimension-Nano sheets, Nano wires and Quantum dots	2 hrs
3.4	Properties of nanomaterials-mechanical, electrical and optical Applications of nanotechnology (qualitative ideas)	1 hr
4	Magnetism & Electro Magnetic Theory (9 hours)	
4.1	Magnetic field and Magnetic flux density, Gauss's law for Magnetic flux	2 hrs

	density, Ampere's Circuital law, Faraday's law in terms of EMF		
	produced by changing magnetic flux		
4.2	Explanation for Magnetic permeability and susceptibility Classification		1 hr
	of magnetic materials- para, dia and ferromagnetic materials		
4.3	Fundamentals of vector calculus, concept of divergence, gradient and		2 hrs
	curl along with physical significance, Line, Surface and Volume integrals,		
	Gauss divergence theorem & Stokes' theorem		
4.4	Equation of continuity, Derivation of Maxwell's equations in vacuum,		4 hrs
	Comparison of displacement current with conduction current.	m	
	Electromagnetic waves, Velocity of Electromagnetic waves in free		
	space, Flow of energy and Poynting's vector (no derivation)		
5	Superconductivity &Photonics (9hours)		
5.1	Super conducting Phenomena, Meissner effect and perfect		2 hrs
	diamagnetism, Types of superconductors-Type I and Type II		
5.2	BCS Theory (Qualitative), High temperature superconductors,		2 hrs
	Applications of super conductivity		
5.3	Introduction to photonics-Photonic devices-Light Emitting Diode, Photo		2 hrs
	detectors -Junction and PIN photodiodes, Solar cells-I-V Characteristics		
5.4	Optic fibre-Principle of propagation of light, Types of fibres-Step index		3 hrs
	and Graded index fibres, Numerical aperture –Derivation, Fibre optic		
	communication system (block diagram), Industrial, Medical and		
	Technological applications of optical fibre, Fibre optic sensors-Intensity		
	Modulated and Phase modulated sensors		

		CATEGORY	L	Т	Р	CREDIT	YEAR OF
HUN	LIFE SKILLS						INTRODUCTION
101		MNC	2	0	2		2019

Preamble: Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underly personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

Prerequisite: None

Course Outcomes: After the completion of the course the student will be able to

CO 1	Define and Identify different life skills required in personal and professional life
CO 2	Develop an awareness of the self and apply well-defined techniques to cope with emotions
	and stress.
CO 3	Explain the basic mechanics of effective communication and demonstrate these through
	presentations.
CO 4	Take part in group discussions
CO 5	Use appropriate thinking and problem solving techniques to solve new problems
CO 6	Understand the basics of teamwork and leadership

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	РО	РО
						125				10	11	12
CO 1				186		2		1	2	2	1	3
CO 2									3			2
CO 3						1			1	3		
CO 4						14.6				3		1
CO 5		3	2	1								
CO 6						1			3			

Mark distribution

Total Marks	CIE	ESE	ESE Duration
100	50	50	2 hours

Continuous Internal Evaluation

Total Marks: 50

Attendance : 10 marks
Regular assessment : 15 marks
Series test (one test only, should include first three modules) : 25 marks

Regular assessment

➤ Group Discussion (Marks: 9)

Create groups of about 6 students each and engage them on a GD on a suitable topic for about 20 minutes. Parameters to be used for evaluation are as follows:

Communication Skills : 3 marks
 Subject Clarity : 2 marks
 Group Dynamics : 2 marks
 Behaviours & Mannerisms : 2 marks

Presentation Skills (Marks: 6)

Identify a suitable topic and ask the students to prepare a presentation (preferably a power point presentation) for about 10 minutes. Parameters to be used for evaluation are as follows:

Communication Skills : 2 marks
 Platform Skills : 2 marks
 Subject Clarity/Knowledge : 2 marks

End Semester Examination

Total Marks: 50 Time: 2 hrs.

Part A: Short answer question (25 marks)

There will be one question from each MODULE (five questions in total, five marks each). Each question should be written in about maximum of 400 words. Parameters to be used for evaluation are as follows:

- (i) Content Clarity/Subject Knowledge
- (ii) Presentation style
- (iii) Organization of content

Part B: Case Study (25 marks)

The students will be given a case study with questions at the end. The students have to analyze the case and answer the question at the end. Parameters to be used for evaluation are as follows:

- (i) Analyze the case situation
- (ii) Key players/characters of the case
- (iii) Identification of the problem (both major & minor if exists)
- (iv) Bring out alternatives
- (v) Analyze each alternative against the problem
- (vi) Choose the best alternative
- (vii) Implement as solution
- (viii) Conclusion

(ix) Answer the question at the end of the case

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. List 'life skills' as identified by WHO
- 2. What do you mean by effective communication?
- 3. What are the essential life skills required by a professional?

Course Outcome 2 (CO2)

- 1. Identify an effective means to deal with workplace stress.
- 2. How can a student apply journaling to stress management?
- 3. What is the PATH method? Describe a situation where this method can be used effectively.

Course Outcome 3(CO3):

- 1. Identify the communication network structure that can be observed in the given situations.

 Describe them.
 - (a) A group discussion on development.
 - (b) An address from the Principal regarding punctuality.
 - (c) A reporter interviewing a movie star.
 - (d) Discussing the answers of a test with a group of friends.
- 2. Elucidate the importance of non-verbal communication in making a presentation
- 3. Differentiate between kinesics, proxemics, and chronemics with examples.

Course Outcome 4 (CO4):

- 1. How can a participant conclude a group discussion effectively?
- 2. 'Listening skills are essential for effectively participating in a group discussion.' Do you agree? Substantiate your answer.

Course Outcome 5 (CO5):

- 1. Illustrate the creative thinking process with the help of a suitable example
- 2. Translate the following problem from verbal to graphic form and find the solution: In a quiz, Ananth has 50 points more than Bimal, Chinmay has 60 points less than Ananth, and Dharini is 20 points ahead of Chinmay. What is the difference in points between Bimal and Dharini?

3. List at least five ways in which the problem "How to increase profit?" can be redefined

Course Outcome 6 (CO6):

- 1. A group of engineers decided to brainstorm a design issue on a new product. Since no one wanted to disagree with the senior members, new ideas were not flowing freely. What group dynamics technique would you suggest to avoid this 'groupthink'? Explain the procedure.
- 2. "A group focuses on individual contribution, while a team must focus on synergy." Explain.
- 3. Identify the type of group formed / constituted in each of the given situations
 - a) A Police Inspector with subordinates reporting to him
 - b) An enquiry committee constituted to investigate a specific incident
 - c) The Accounts Department of a company
 - d) A group of book lovers who meet to talk about reading

Syllabus

Module 1

Overview of Life Skills: Meaning and significance of life skills, Life skills identified by WHO: Self-awareness, Empathy, Critical thinking, Creative thinking, Decision making, problem solving, Effective communication, interpersonal relationship, coping with stress, coping with emotion.

Life skills for professionals: positive thinking, right attitude, attention to detail, having the big picture, learning skills, research skills, perseverance, setting goals and achieving them, helping others, leadership, motivation, self-motivation, and motivating others, personality development, IQ, EQ, and SQ

Module 2

Self-awareness: definition, need for self-awareness; Coping With Stress and Emotions, Human Values, tools and techniques of SA: questionnaires, journaling, reflective questions, meditation, mindfulness, psychometric tests, feedback.

Stress Management: Stress, reasons and effects, identifying stress, stress diaries, the four A's of stress management, techniques, Approaches: action-oriented, emotion-oriented, acceptance-oriented, resilience, Gratitude Training,

Coping with emotions: Identifying and managing emotions, harmful ways of dealing with emotions, PATH method and relaxation techniques.

Morals, Values and Ethics: Integrity, Civic Virtue, Respect for Others, Living Peacefully. Caring, Sharing, Honesty, Courage, Valuing Time, Time management, Co operation, Commitment, Empathy, Self-Confidence, Character, Spirituality, Avoiding Procrastination, Sense of Engineering Ethics.

Module 3

21st century skills: Creativity, Critical Thinking, Collaboration, Problem Solving, Decision Making, Need for Creativity in the 21st century, Imagination, Intuition, Experience, Sources of Creativity, Lateral Thinking, Myths of creativity, Critical thinking Vs Creative thinking, Functions of Left Brain & Right brain, Convergent & Divergent Thinking, Critical reading & Multiple Intelligence.

Steps in problem solving: Problem Solving Techniques, Six Thinking Hats, Mind Mapping, Forced Connections. Analytical Thinking, Numeric, symbolic, and graphic reasoning. Scientific temperament and Logical thinking.

Module 4

Group and Team Dynamics: Introduction to Groups: Composition, formation, Cycle, thinking, Clarifying expectations, Problem Solving, Consensus, Dynamics techniques, Group vs Team, Team Dynamics, Virtual Teams. Managing team performance and managing conflicts, Intrapreneurship.

Module 5

Leadership: Leadership framework, entrepreneurial and moral leadership, vision, cultural dimensions. Growing as a leader, turnaround leadership, managing diverse stakeholders, crisis management. Types of Leadership, Traits, Styles, VUCA Leadership, Levels of Leadership, Transactional vs Transformational Leaders, Leadership Grid, Effective Leaders.

Lab Activities

Verbal

Effective communication and Presentation skills.

Different kinds of communication; Flow of communication; Communication networks, Types of barriers; Miscommunication

Introduction to presentations and group discussions.

Learning styles: visual, aural, verbal, kinaesthetic, logical, social, solitary; Previewing, KWL table, active listening, REAP method

Note-taking skills: outlining, non-linear note-taking methods, Cornell notes, three column note taking.

Memory techniques: mnemonics, association, flashcards, keywords, outlines, spider diagrams and mind maps, spaced repetition.

Time management: auditing, identifying time wasters, managing distractions, calendars and checklists; Prioritizing - Goal setting, SMART goals; Productivity tools and apps, Pomodoro technique.

Non Verbal:

Non-verbal Communication and Body Language: Forms of non-verbal communication; Interpreting body-language cues; Kinesics; Proxemics; Chronemics; Effective use of body language, Communication in a multi cultural environment.

Reference Books

- 1. Shiv Khera, You Can Win, Macmillan Books, New York, 2003.
- 2. Barun K. Mitra, "Personality Development & Soft Skills", Oxford Publishers, Third impression, 2017
- 3. ICT Academy of Kerala, "Life Skills for Engineers", McGraw Hill Education (India) Private Ltd., 2016.
- 4. Caruso, D. R. and Salovey P, "The Emotionally Intelligent Manager: How to Develop and Use the Four Key Emotional Skills of Leadership", John Wiley & Sons, 2004.
- 5. Kalyana, "Soft Skill for Managers"; First Edition; Wiley Publishing Ltd, 2015.
- 6. Larry James, "The First Book of Life Skills"; First Edition, Embassy Books, 2016.
- 7. Shalini Verma, "Development of Life Skills and Professional Practice"; First Edition; Sultan Chand (G/L) & Company, 2014.
- 8. Daniel Goleman, "Emotional Intelligence"; Bantam, 2006.
- 9. Remesh S., Vishnu R.G., "Life Skills for Engineers", Ridhima Publications, First Edition, 2016.
- 10. Butterfield Jeff, "Soft Skills for Everyone", Cengage Learning India Pvt Ltd; 1 edition, 2011.
- 11. Training in Interpersonal Skills: Tips for Managing People at Work, Pearson Education, India; 6 edition, 2015.
- 12. The Ace of Soft Skills: Attitude, Communication and Etiquette for Success, Pearson Education; 1 edition, 2013.

	LINEAR ALGEBRA AND CALCULUS	CATEGORY	L	T	Р	CREDIT	Year of
MAT							Introduction
101		BSC	3	1	0	4	2019

Preamble: This course introduces students to some basic mathematical ideas and tools which are at the core of any engineering course. A brief course in Linear Algebra familiarises students with some basic techniques in matrix theory which are essential for analysing linear systems. The calculus of functions of one or more variables taught in this course are useful in modelling and analysing physical phenomena involving continuous change of variables or parameters and have applications across all branches of engineering.

Prerequisite: A basic course in one-variable calculus and matrix theory.

Course Outcomes: After the completion of the course the student will be able to

CO 1	solve systems of linear equations, diagonalize matrices and characterise quadratic forms
CO 2	compute the partial and total derivatives and maxima and minima of multivariable functions
CO 3	compute multiple integrals and apply them to find areas and volumes of geometrical shapes,
	mass and centre of gravity of plane laminas
CO 4	perform various tests to determine whether a given series is convergent, absolutely
	convergent or conditionally convergent
CO 5	determine the Taylor and Fourier series expansion of functions and learn their applications.

Mapping of course outcomes with program outcomes

	PO	PO 2	PO 3	PO 4	PO 5	PO 6	РО	PO 8	PO 9	PO 10	PO 11	PO 12
	1						7	1	_/			
CO 1	3	3	3	3	2	1			1	2		2
CO 2	3	3	3	3	2	1			1	2		2
CO 3	3	3	3	3	2	1			1	2		2
CO 4	3	2	3	2	1	1			1	2		2
CO 5	3	3	3	3	2	1			1	2		2

Assessment Pattern

Bloom's Category	Continuous Asse	End Semester		
	Test 1 (Marks)	Test 2 (Marks)	Examination (Marks)	
Remember	10	10	20	
Understand	20	20	40	
Apply	20	20	40	
Analyse				
Evaluate				
Create				

Mark distribution

Total Marks	CIE marks	ESE marks	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks
Continuous Assessment Test (2 numbers) : 25 marks
Assignment/Quiz/Course project : 15 marks

Assignments: Assignment should include specific problems highlighting the applications of the methods introduced in this course in science and engineering.

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Solve systems of linear equations, diagonalize matrices and characterise quadratic forms

- 1. A is a real matrix of order 3×3 and $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$. What can you say about the solution of AX = 0 0 if rank of A is 1? 2 ?3?
- 2. Given $A = \begin{bmatrix} 3 & 0 & 2 \\ 0 & 2 & 0 \\ -2 & 0 & 0 \end{bmatrix}$, find an orthogonal matrix P that diagonalizes A.
- 3. Find out what type of conic section the following quadratic form represents

$$17x^2 - 30x_1x_2 + 17x_2^2 = 128$$

4. The matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ has an eigen value5 with corresponding Eigen vector $X = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$. Find A^5X

Course Outcome 2 (CO2): compute the partial and total derivatives and maxima and minima of multivariable functions

1. Find the slope of the surface $z = x^2y + 5y^3$ in the x-direction at the point (1,-2)

- 2. Given the function w = xy + z, use chain rule to find the instantaneous rate of change of wat each point along the curve x = cost, y = sint, z = t
- **3.** Determine the dimension of rectangular box open at the top, having a volume 32 cubic ft and requiring the least amount of material for it's construction.

Course Outcome 3(CO3): compute multiple integrals and apply them to find areas and volumes of geometrical shapes, mass and centre of gravity of plane laminas.

- 1. Evaluate $\iint_D (x+2y)\,DA$ where D is the region bounded by the parabolas $y=2x^2$ and $y=1+x^2$
- 2. Explain how you would find the volume under the surface z = f(x, y) and over a specific region D in the xy-plane using (i) double integral (ii) triple integral?
- 3. Find the mass and centre of gravity of a triangular lamina with vertices (0,0), (2,1), (0,3) if the density function is f(x,y) = x + y
- 4. Use spherical coordinates to evaluate $\iiint_B (x^2 + y^2 + z^2)^3 dV$ where B is the unit ball defined by $B = \{(x, y, z): x^2 + y^2 + z^2 \le 1\}$

Course Outcome 4 (CO4): perform various tests to determine whether a given series is convergent, absolutely convergent or conditionally convergent.

- 1. What is the difference between a sequence and a series and when do you say that they are convergent? Divergent?
- 2. Determine whether the series $\sum_{n=1}^{n=\infty} \frac{5}{2n^2+4n+3}$ converges or diverges.
- 3. Is the series $\sum_{n=1}^{n=\infty} \frac{(-1)^{n-1}}{n}$ convergent? Absolutely convergent? Conditionally convergent?

Course Outcome 5 (CO5): determine the Taylor and Fourier series expansion of functions and learn their applications.

- 1. Assuming the possibility of expansion find the Maclaurin series expansion of $f(x) = (1+x)^k \text{for}|x| < 1 \text{where } k \text{is any real number.}$ What happens if k is a positive integer?
- 2. Use Maclaurin series of ln(1+x), $-1 < x \le 1$ to find an approximate value of ln(1+x).
- 3. Find the Fourier series of the function $f(x) = x^2, -2 \le x < 2, f(x+4) = f(x)$. Hence using Parseval's identity prove that $1 + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}$
- 4. Expand the function f(x) = x (0 < x < 1/2) into a (i) Fourier sine series (ii) Fourier cosine series.

Model Question paper

QP COI	PAGES:3
Reg No	;
Name	:
	DUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR Course Code: MAT 101 Duration: 3 Hours
	LINEAR ALGEBRA AND CALCULUS
	(2019- <mark>Sc</mark> heme)
	(Common to all branches)
	PART A
	(Answer all questions, each question carries 3 marks) $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$
1.	Determine the rank of the matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ -2 & -4 & 2 \\ 3 & 6 & -3 \end{bmatrix}$.
2.	Write down the eigen values of $=\begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$. What are the eigen values of $P^{-1}AP$ where $P = \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix}$?
3.	Find $f_x(1,3)$ and $f_y(1,3)$ for the function $f(x,y) = 2x^3y^2 + 2y + 4x$.
4.	Show that the function $u(x,t) = \sin(x-ct)$ is a solution of the equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$.
5.	Use double integral to find the area of the region enclosed between the parabolas $y = \frac{1}{2}x^2$ and the line $y = 2x$.
6.	Use polar coordinates to evaluate the area of the region bounded by $x^2 + y^2 = 4$, the line $y = x$ and the y axis in the first quadrant
7.	Test the convergence of the series $\sum_{k=1}^{\infty} \frac{k}{k+1}$.
8.	Test the convergence of the alternating series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$ using Leibnitz test.
9. 10.	Find the Taylor series expansion of $sin\pi x$ about $x=\frac{1}{2}$. Find the values to which the Fourier series of
	$f(x) = x \text{for} - \pi < x < \pi, \text{ with } f(x + 2\pi) = f(x) \text{ converges} $ (10x3=30)

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -I

11. (a) Solve the following system of equations

$$y + z - 2w = 0$$

2x - 3y - 3z + 6w = 2
4x + y + z - 2w = 4

- 4x + y + z 2w = 4(b) Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$
- 12. (a) Diagonalize the matrix $\begin{bmatrix} -1 & 2 & -2 \\ 2 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix}$
 - (b) What kind of conic section the quadratic form $3x_1^2 + 22x_1x_2 + 3x_2^2 = 0$ represents? Transform it to principal axes.

Module - II

- 13. (a) Find the local linear approximation to $f(x,y) = \sqrt{x^2 + y^2}$ at the point (3,4). Use it to approximate f(3.04,3.98)
 - (b) Let $w = \sqrt{x^2 + y^2 + z^2}$, $x = \cos\theta$, $y = \sin\theta$, $z = \tan\theta$. Use chain rule to find $\frac{dw}{d\theta}$ when $\theta = \frac{\pi}{4}$.
- 14. (a) Let z = f(x, y) where $x = rcos\theta, y = rsin\theta$, prove that $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2$.
 - (b) Locate all relative maxima, relative minima and saddle points

$$f(x,y) = xy + \frac{a^3}{x} + \frac{b^3}{y} (a \neq 0, b \neq 0).$$

Module - II

- 15. (a) Evaluate $\iint_D (2x^2y + 9y^3) dxdy$ where D is the region bounded by $y = \frac{2}{3}x$ and $y = 2\sqrt{x}$
 - (b) Evaluate $\int_0^4 \int_{\sqrt{y}}^2 e^{x^3} dx dy$ changing the order of integration.
- 16. (a) Find the volume of the solid bounded by the cylinder $x^2 + y^2 = 4$ and the planes y + z = 4 and z = 0..
 - (b) Evaluate $\iiint \sqrt{1-x^2-y^2-z^2} \ dx dy dz$, taken throughout the volume of the sphere $x^2+y^2+z^2=1$, by transforming to spherical polar coordinates

Module - IV

17. (a) Test the convergence of the series

(i)
$$\sum_{k=1}^{\infty} \frac{k^k}{k!}$$
 (ii)
$$\sum_{k=2}^{\infty} \left(\frac{4k-5}{2k+1}\right)^k$$

- (b) Determine the convergence or divergence of the series $\sum_{k=1}^{\infty} (-1)^k \frac{(2k-1)!}{3^k}$
- 18. (a) Check whether the series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{(2k)!}{(3k-2)!}$ is absolutely convergent, conditionally convergent or divergent.

(b) Test the convergence of the series $1 + \frac{1.2}{1.3} + \frac{1.2.3}{1.3.5} + \frac{1.2.3.4}{1.3.5.7} + \cdots$

Module - V

- 19. (a) Obtain the Fourier series of for $f(x) = e^{-x}$, in the interval $0 < x < 2\pi$. with $f(x + x) = e^{-x}$
 - $(b) \text{ Find the half range sine series of } f(x) = \begin{cases} 2\pi L & \text{if } 0 < x < \frac{L}{2} \\ \frac{2k(L-x)}{L} & \text{if } \frac{L}{2} < x < L \end{cases}$
- 20. (a) Expand $(1+x)^{-2}$ as a Taylor series about x=0 and state the region of convergence of the series.
- (b) Find the Fourier series for $f(x) = x^2$ in the interval $-\pi < x < \pi$

with
$$f(x+2\pi) = f(x)$$
. Hence show that $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}$. (14X5=70)

Syllabus

Module 1 (Linear algebra)

(Text 2: Relevant topics from sections 7.3, 7.4, 7.5, 8.1,8.3,8.4)

Systems of linear equations, Solution by Gauss elimination, row echelon form and rank of a matrix, fundamental theorem for linear systems (homogeneous and non-homogeneous, without proof), Eigen values and eigen vectors. Diagonaliztion of matrices, orthogonal transformation, quadratic forms and their canonical forms.

Module 2 (multivariable calculus-Differentiation)

(Text 1: Relevant topics from sections 13.3, 13.4, 13.5, 13.8)

Concept of limit and continuity of functions of two variables, partial derivatives, Differentials, Local Linear approximations, chain rule, total derivative, Relative maxima and minima, Absolute maxima and minima on closed and bounded set.

Module 3(multivariable calculus-Integration)

(Text 1: Relevant topics from sections 14.1, 14.2, 14.3, 14.5, 14.6, 14.8)

Double integrals (Cartesian), reversing the order of integration, Change of coordinates (Cartesian to polar), finding areas and volume using double integrals, mass and centre of gravity of inhomogeneous laminas using double integral. Triple integrals, volume calculated as triple integral, triple integral in cylindrical and spherical coordinates (computations involving spheres, cylinders).

Module 4 (sequences and series)

(Text 1: Relevant topics from sections 9.1, 9.3, 9.4, 9.5, 9.6)

Convergence of sequences and series, convergence of geometric series and p-series(without proof), test of convergence (comparison, ratio and root tests without proof); Alternating series and Leibnitz test, absolute and conditional convergence.

Module 5 (Series representation of functions)

(Text 1: Relevant topics from sections 9.8, 9.9. Text 2: Relevant topics from sections 11.1, 11.2, 11.6)

Taylor series (without proof, assuming the possibility of power series expansion in appropriate domains), Binomial series and series representation of exponential, trigonometric, logarithmic functions (without proofs of convergence); Fourier series, Euler formulas, Convergence of Fourier series (without proof), half range sine and cosine series, Parseval's theorem (without proof).

Text Books

- 1. H. Anton, I. Biven, S. Davis, "Calculus", Wiley, 10th edition, 2015.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10thEdition, John Wiley & Sons, 2016.

Reference Books

- 1. J. Stewart, Essential Calculus, Cengage, 2nd edition, 2017
- 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9 th Edition, Pearson, Reprint, 2002.
- 3. Peter V. O'Neil, Advanced Engineering Mathematics, Cengage, 7th Edition, 2012
- 4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 5. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36 Edition, 2010.

Course Contents and Lecture Schedule

No	Topic	No. of Lectures
1	Linear Algebra (10 hours)	
1.1	Systems of linear equations, Solution by Gauss elimination	1
1.2	Row echelon form, finding rank from row echelon form, fundamental theorem for linear systems	3
1.3	Eigen values and eigen vectors	2
1.4	Diagonaliztion of matrices, orthogonal transformation, quadratic forms	4

	and their canonical forms.	
2	Multivariable calculus-Differentiation (8 hours)	
2.1	Concept of limit and continuity of functions of two variables, partial derivatives	2
2.2	Differentials, Local Linear approximations	2
2.3	Chain rule, total derivative	2
2.4	Maxima and minima	2
3	Multivariable calculus-Integration (10 hours)	
3.1	Double integrals (Cartesian)-evaluation	2
3.2	Change of order of integration in double integrals, change of coordinates (Cartesian to polar),	2
3.3	Finding areas and volumes, mass and centre of gravity of plane laminas	3
3.4	Triple integrals	3
4	Sequences and series (8 hours)	
4.1	Convergence of sequences and series, geometric and p-series	2
4.2	Test of convergence(comparison, ratio and root)	4
4.3	Alternating series and Leibnitz test, absolute and conditional convergence	2
5	Series representation of functions (9 hours)	
5.1	Taylor series, Binomial series and series representation of exponential, trigonometric, logarithmic functions;	3
5.2	Fourier series, Euler formulas, Convergence of Fourier series(Dirichlet's conditions)	3
5.3	Half range sine and cosine series, Parseval's theorem.	3

HUN	PROFESSIONAL COMMUNICATION	CATEGORY	L	T	Р	CREDIT
102		MNC	2	0	2	

Preamble: Clear, precise, and effective communication has become a *sine qua non* in today's information-driven world given its interdependencies and seamless connectivity. Any aspiring professional cannot but master the key elements of such communication. The objective of this course is to equip students with the necessary skills to listen, read, write, and speak so as to comprehend and successfully convey any idea, technical or otherwise, as well as give them the necessary polish to become persuasive communicators.

Prerequisite: None

Course Outcomes: After the completion of the course the student will be able to

CO 1	Develop vocabulary and language skills relevant to engineering as a profession
CO 2	Analyze, interpret and effectively summarize a variety of textual content
CO 3	Create effective technical presentations
CO 4	Discuss a given technical/non-technical topic in a group setting and arrive at
	generalizations/consensus
CO 5	Identify drawbacks in listening patterns and apply listening techniques for specific needs
CO 6	Create professional and technical documents that are clear and adhering to all the
	necessary conventions

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	РО
										10	11	12
CO 1						100				3		2
CO 2										1		3
CO 3						1			1	3		
CO 4										3		1
CO 5		1							2	3		
CO 6	1					1			1	3		

Mark distribution

Total Marks	CIE	ESE	ESE Duration
100	50	50	2 hours

Continuous Internal Evaluation

Total Marks: 50

Attendance : 10 marks
Regular assessment : 25 marks

Series test (one test only, should include verbal aptitude for placement and higher studies, this test

: 15 marks

will be conducted for 50 marks and reduced to 15)

Regular assessment

Project report presentation and Technical presentation through PPT : 7.5 marks
Listening Test : 5 marks
Group discussion/mock job interview : 7.5 marks
Resume submission : 5 marks

End Semester Examination Total Marks: 50, Time: 2 hrs.

Course Level Assessment Questions

Course Outcome 1 (CO1):

1. List down the ways in which gestures affect verbal communication.

2. Match the words and meanings

Ambiguous promotion

Bona fide referring to whole

Holistic not clear Exaltation genuine

3. Expand the following Compound Nouns - a. Water supply. b. Object recognition. c. Steam turbine

Course Outcome 2 (CO2)

1. Read the passage below and prepare notes:

Mathematics, rightly viewed, possesses not only truth, but supreme beauty—a beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show. The true spirit of delight, the exaltation, the sense of being more than man, which is the touchstone of the highest excellence, is to be found in mathematics as surely as in poetry. What is best in mathematics deserves not merely to be learnt as a task, but to be assimilated as a part of daily thought, and brought again and again before the mind with everrenewed encouragement. Real life is, to most men, a long second-best, a perpetual compromise between the ideal and the possible; but the world of pure reason knows no compromise, no practical limitations, no barrier to the creative activity embodying in splendid edifices the passionate aspiration after the perfect from which all great work springs. Remote from human passions, remote even from the pitiful facts of nature, the generations have gradually created an ordered cosmos, where pure thought can dwell as in its natural home, and where one, at least, of our nobler impulses can escape from the dreary exile of the actual world.

So little, however, have mathematicians aimed at beauty, that hardly anything in their work has had this conscious purpose. Much, owing to irrepressible instincts, which were better than avowed

beliefs, has been moulded by an unconscious taste; but much also has been spoilt by false notions of what was fitting. The characteristic excellence of mathematics is only to be found where the reasoning is rigidly logical: the rules of logic are to mathematics what those of structure are to architecture. In the most beautiful work, a chain of argument is presented in which every link is important on its own account, in which there is an air of ease and lucidity throughout, and the premises achieve more than would have been thought possible, by means which appear natural and inevitable. Literature embodies what is general in particular circumstances whose universal significance shines through their individual dress; but mathematics endeavours to present whatever is most general in its purity, without any irrelevant trappings.

How should the teaching of mathematics be conducted so as to communicate to the learner as much as possible of this high ideal? Here experience must, in a great measure, be our guide; but some maxims may result from our consideration of the ultimate purpose to be achieved.

- From "On the teaching of mathematics" Bertrand Russell
- **2.** Enumerate the advantages and disadvantages of speed reading. Discuss how it can impact comprehension.

Course Outcome 3(CO3):

- 1. What are the key elements of a successful presentation?
- 2. Elucidate the importance of non-verbal communication in making a presentation
- 3. List out the key components in a technical presentation.

Course Outcome 4 (CO4):

- 1. Discuss: 'In today's world, being a good listener is more important than being a good Speaker.'
- 2. Listen to a video/live group discussion on a particular topic, and prepare a brief summary of the proceedings.
- 3. List the do's and don'ts in a group discussion.

Course Outcome 5 (CO5):

- 1. Watch a movie clip and write the subtitles for the dialogue.
- 2. What do you mean by barriers to effective listening? List ways to overcome each of these.
- 3. What are the different types of interviews? How are listening skills particularly important in Skype/telephonic interviews?

Course Outcome 6 (CO6):

- **1.** Explain the basic structure of a technical report.
- 2. You have been offered an internship in a much sought-after aerospace company and are very excited about it. However, the dates clash with your series tests. Write a letter to the Manager University Relations of the company asking them if they can change the dates to coincide with your vacation.
- 3. You work in a well-reputed aerospace company as Manager University Relations. You are in charge of offering internships. A student has sent you a letter requesting you to change the dates allotted to him since he has series exams at that time. But there are no vacancies available during the period he has requested for. Compose an e-mail informing him of this and suggest that he try to arrange the matter with his college.

Syllabus

Module 1

Use of language in communication: Significance of technical communication Vocabulary Development: technical vocabulary, vocabulary used in formal letters/emails and reports, sequence words, misspelled words, compound words, finding suitable synonyms, paraphrasing, verbal analogies. Language Development: subject-verb agreement, personal passive voice, numerical adjectives, embedded sentences, clauses, conditionals, reported speech, active/passive voice.

Technology-based communication: Effective email messages, slide presentations, editing skills using software. Modern day research and study skills: search engines, repositories, forums such as Git Hub, Stack Exchange, OSS communities (MOOC, SWAYAM, NPTEL), and Quora; Plagiarism

Module 2

Reading, Comprehension, and Summarizing: Reading styles, speed, valuation, critical reading, reading and comprehending shorter and longer technical articles from journals, newspapers, identifying the various transitions in a text, SQ3R method, PQRST method, speed reading. Comprehension: techniques, understanding textbooks, marking and underlining, Note-taking: recognizing non-verbal cues.

Module 3

Oral Presentation: Voice modulation, tone, describing a process, Presentation Skills: Oral presentation and public speaking skills, business presentations, Preparation: organizing the material, self-Introduction, introducing the topic, answering questions, individual presentation practice, presenting visuals effectively.

Debate and Group Discussions: introduction to Group Discussion (GD), differences between GD and debate; participating GD, understanding GD, brainstorming the topic, questioning and clarifying, GD strategies, activities to improve GD skills

Module 4

Listening and Interview Skills Listening: Active and Passive listening, listening: for general content, to fill up information, intensive listening, for specific information, to answer, and to understand. Developing effective listening skills, barriers to effective listening, listening to longer technical talks, listening to classroom lectures, talks on engineering /technology, listening to documentaries and making notes, TED talks.

Interview Skills: types of interviews, successful interviews, interview etiquette, dress code, body language, telephone/online (skype) interviews, one-to-one interview & panel interview, FAQs related to job interviews

Module 5

Formal writing: Technical Writing: differences between technical and literary style. Letter Writing (formal, informal and semi formal), Job applications, Minute preparation, CV preparation (differences between Bio-Data, CV and Resume), and Reports. Elements of style, Common Errors in Writing: describing a process, use of sequence words, Statements of Purpose, Instructions, Checklists.

Analytical and issue-based Essays and Report Writing: basics of report writing; Referencing Style (IEEE Format), structure of a report; types of reports, references, bibliography.

Lab Activities

Written: Letter writing, CV writing, Attending a meeting and Minute Preparation, Vocabulary Building

Spoken: Phonetics, MMFS (Multimedia Feedback System), Mirroring, Elevator Pitch, telephone etiquette, qualities of a good presentation with emphasis on body language and use of visual aids.

Listening: Exercises based on audio materials like radio and podcasts. Listening to Song. practice and exercises.

Reading: Speed Reading, Reading with the help of Audio Visual Aids, Reading Comprehension Skills **Mock interview and Debate/Group Discussion**: concepts, types, Do's and don'ts- intensive practice

Reference Books

- 1. English for Engineers and Technologists (Combined edition, Vol. 1 and 2), Orient Blackswan 2010.
- 2. Meenakshi Raman and Sangeetha Sharma,"Technical Communication: Principles and Practice", 2nd Edition, Oxford University Press, 2011
- 3. Stephen E. Lucas, "The Art of Public Speaking", 10th Edition; McGraw Hill Education, 2012.
- 4. Ashraf Rizvi, "Effective Technical Communication", 2nd Edition, McGraw Hill Education, 2017.
- 5. William Strunk Jr. & E.B. White, "The Elements of Style", 4th Edition, Pearson, 1999.
- 6. David F. Beer and David McMurrey, Guide to writing as an Engineer, John Willey. New York, 2004.
- 7. Goodheart-Willcox, "Professional Communication", First Edition, 2017.
- 8. Training in Interpersonal Skills: Tips for Managing People at Work, Pearson Education, India, 6 edition, 2015.
- 9. The Ace of Soft Skills: Attitude, Communication and Etiquette for Success, Pearson Education; 1 edition, 2013.
- 10. Anand Ganguly, "Success in Interview", RPH, 5th Edition, 2016.
- 11. Raman Sharma, "Technical Communications", Oxford Publication, London, 2004.

ESL 120	CIVIL & MECHANICAL WORKSHOP	CATEGORY	L	Т	P	CREDIT	YEAR OF INTRODUCTION
	· · · · · · · · · · · · · · · · · · ·		0	0	2	1	2019

Preamble: The course is designed to train the students to identify and manage the tools, materials and methods required to execute an engineering project. Students will be introduced to a team working environment where they develop the necessary skills for planning, preparing and executing an engineering project.

To enable the student to familiarize various tools, measuring devices, practices and different methods of manufacturing processes employed in industry for fabricating components.

Prerequisite: None

Course Outcomes: After the completion of the course the student will be able to:

Course Outcome	Course Outcome Description
CO 1	Name different devices and tools used for civil engineering measurements
CO 2	Explain the use of various tools and devices for various field measurements
CO 3	Demonstrate the steps involved in basic civil engineering activities like plot measurement, setting out operation, evaluating the natural profile of land, plumbing and undertaking simple construction work.
CO 4	Choose materials and methods required for basic civil engineering activities like field measurements, masonry work and plumbing.
CO 5	Compare different techniques and devices used in civil engineering measurements
CO 6	Identify Basic Mechanical workshop operations in accordance with the material and objects
CO 7	Apply appropriate Tools and Instruments with respect to the mechanical workshop trades
CO 8	Apply appropriate safety measures with respect to the mechanical workshop trades

Mapping of course outcomes with program outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	1	-	-	-	1	1	-	-	2	2	-	-
CO 2	1	-	-	-	1	1	-	-	2	2	-	-
CO 3	1	-	-	-	1	1	-	2	2	2	1	-
CO 4	1	-	-	-	1	1	-	2	2	2	1	1
CO 5	1	-	-	-	1	1	-	-	2	2		1
CO 6	2											

CO 7	2						
CO 8	2						

Mark distribution

Total Marks	CIE	ESE	ESE Duration
100	70	30	1 hour

Assessment Procedure: Total marks allotted for the course is 100 marks. CIE shall be conducted for 70 marks and ESE for 30 marks. CIE should be done for the work done by the student and also viva voce based on the work done on each practical session. ESE shall be evaluated by written examination of one hour duration conducted internally by the institute.

Continuous Internal Evaluation Pattern:

Attendance : 20 marks
Class work/ Assessment / Viva-voce : 50 marks
End semester examination (Internally by college) : 30 marks

End Semester Examination Pattern: Written Objective Examination of one hour

SYLLABUS

PART 1

CIVIL WORKSHOP

- Exercise 1. Calculate the area of a built-up space and a small parcel of land- Use standard measuring tape and digital distance measuring devices
- Exercise 2. (a) Use screw gauge and vernier calliper to measure the diameter of a steel rod and thickness of a flat bar
 - (b) Transfer the level from one point to another using a water level
 - (c) Set out a one room building with a given plan and measuring tape
- Exercise 3. Find the level difference between any two points using dumpy level
- Exercise 4. (a) Construct a $1\frac{1}{2}$ thick brick wall of 50 cm height and 60 cm length using English bond. Use spirit level to assess the tilt of walls.
 - (b) Estimate the number of different types of building blocks to construct this wall.

- Exercise 5. (a) Introduce the students to plumbing tools, different types of pipes, type of connections, traps, valves ,fixtures and sanitary fittings.
 - (b) Install a small rainwater harvesting installation in the campus

Reference Books:

- 1. Khanna P.N, "Indian Practical Civil Engineering Handbook", Engineers Publishers.
- 2. Bhavikatti. S, "Surveying and Levelling (Volume 1)", I.K. International Publishing House
- 3. Arora S.P and Bindra S.P, "Building Construction", Dhanpat Rai Publications
- 4. S. C. Rangwala, "Engineering Materials," Charotar Publishing House.

PART II

MECHANICAL WORKSHOP

LIST OF EXERCISES

(Minimum EIGHT units mandatory and FIVE models from Units 2 to 8 mandatory)

UNIT 1:- General: Introduction to workshop practice, Safety precautions, Shop floor ethics, Basic First Aid knowledge.

Study of mechanical tools, components and their applications: (a) Tools: screw drivers, spanners, Allen keys, cutting pliers etc and accessories (b) bearings, seals, O-rings, circlips, keys etc.

UNIT 2:- Carpentry: Understanding of carpentry tools

Minimum any one model

1. T – Lap joint 2. Cross lap joint 3. Dovetail joint 4. Mortise joints

UNIT 3:- Foundry: Understanding of foundry tools

Minimum any one model

1.Bench Molding 2. Floor Molding 3. Core making 4. Pattern making

UNIT 4: - Sheet Metal: Understanding of sheet metal working tools

Minimum any one model

- Cylindrical shape
- 2. Conical shape
- 3. Prismatic shaped job from sheet metal

UNIT 5: - Fitting: Understanding of tools used for fitting

Minimum any one model

- 1. Square Joint
- 2. V- Joint
- 3. Male and female fitting

UNIT 6: - Plumbing: Understanding of plumbing tools, pipe joints

Any one exercise on joining of pipes making use of minimum three types of pipe joints

UNIT 7: - Smithy: Understanding of tools used for smithy.

Demonstrating the forge-ability of different materials (MS, Al, alloy steel and cast steels) in cold and hot states.

Observing the qualitative difference in the hardness of these materials

Minimum any one exercise on smithy

- 1. Square prism
- 2. Hexagonal headed bolt
- 3. Hexagonal prism
- 4. Octagonal prism

UNIT 8: -Welding: Understanding of welding equipments

Minimum any one welding practice

Making Joints using electric arc welding. bead formation in horizontal, vertical and over head positions

UNIT 9: - Assembly: Demonstration only

Dissembling and assembling of

- 1. Cylinder and piston assembly
- 2. Tail stock assembly
- 3. Bicycle
- 4. Pump or any other machine

UNIT 10: - Machines: Demonstration and applications of the following machines

Shaping and slotting machine; Milling machine; Grinding Machine; Lathe; Drilling Machine.

UNIT 11: - Modern manufacturing methods: Power tools, CNC machine tools, 3D printing, Glass cutting.

Course Contents and Lecture Schedule:

No	Topic	No of Sessions
1	INTRODUCTION	
1.1	Workshop practice, shop floor precautions, ethics and First Aid knowledge. Studies of mechanical tools, components and their applications: (a) Tools: screw drivers, spanners, Allen keys, cutting pliers etc and accessories (b) bearings, seals, O-rings, circlips, keys etc	1
2	CARPENTRY	
2.1	Understanding of carpentry tools and making minimum one model	2

3	FOUNDRY	
3.1	Understanding of foundry tools and making minimum one model	2
4	SHEET METAL	
4.1	Understanding of sheet metal working tools and making minimum one model	2
5	FITTING	M
5.1	Understanding of fitting tools and making minimum one model	2
6	PLUMBING	
6.1	Understanding of pipe joints and plumbing tools and making minimum one model	2
7	SMITHY	
7.1	Understanding of smithy tools and making minimum one model	2
8	WELDING	
8.1	Understanding of welding equipments and making minimum one model	2
9	ASSEMBLY	
9.1	Demonstration of assembly and dissembling of multiple parts components	1
10	MACHINES	
10.1	Demonstration of various machines	1
11	MODERN MANUFACTURING METHODS	
11.1	Demonstrations of: power tools, CNC Machine tools, 3D printing, Glass cutting	1

ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	CATEGORY	L	Т	Р	CREDIT	YEAR OF INTRODUCTION
		ESC	0	0	2	1	2019

Preamble: Electrical Workshop is intended to impart skills to plan and carry out simple electrical wiring. It is essential for the practicing engineers to identify the basic practices and safety measures in electrical wiring.

Prerequisite: NIL

Course Outcomes: After the completion of the course the student will be able to

CO 1	Demonstrate safety measures against electric shocks.						
CO 2	Identify the tools used for electrical wiring, electrical accessories, wires, cables, batteries						
	and standard symbols						
CO 3	Develop the connection diagram, identify the suitable accessories and materials necessary						
	for wiring simple lighting circuits for domestic buildings						
CO 4	Identify and test various electronic components						
CO 5	Draw circuit schematics with EDA tools						
CO 6	Assemble and test electronic circuits on boards						
CO 7	Work in a team with good interpersonal skills						

Mapping of course outcomes with program outcomes

								_				
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO
										10	11	12
CO 1	_	-			-	3	-	-	1	-	-	1
CO 2	2		-	-			-	-	-	1	-	-
CO 3	2	-	-	1		1		1	2	2	-	2
CO 4	3	-	-	-	-		-		-	-	-	2
CO 5	3	-		- 1	2	-	-	-		-	-	2
CO 6	3	-	-		2	31111		-	-	-	-	1
CO 7	-	-	-	-		1-1		-	3	2	-	2

Mark distribution

Total Marks	CIE	ESE	ESE Duration(Internal)
100	100	-	1 hour

Continuous Internal Evaluation Pattern:

Attendance : 20 marks
Class work/ Assessment/Viva-voce : 50 marks
End semester examination (Internally by college) : 30 marks

End Semester Examination Pattern: Written Objective Examination of one hour

Syllabus

PART 1

ELECTRICAL

List of Exercises / Experiments

- a) Demonstrate the precautionary steps adopted in case of Electrical shocks.
 b)Identify different types of cables, wires, switches, fuses, fuse carriers, MCB, ELCB and MCCB with ratings.
- 2. Wiring of simple light circuit for controlling light/ fan point (PVC conduit wiring)
- 3. Wiring of light/fan circuit using Two way switches . (Staircase wiring)
- **4.** Wiring of Fluorescent lamps and light sockets (6A) with a power circuit for controlling power device. (16A socket)
- **5.** Wiring of power distribution arrangement using single phase MCB distribution board with ELCB, main switch and Energy meter.
- a)Identify different types of batteries with their specifications.b)Demonstrate the Pipe and Plate Earthing Schemes using Charts/Site Visit.

PART II

ELECTRONICS

List of Exercises / Experiments (Minimum of 7 mandatory)

1. Familiarization/Identification of electronic components with specification (Functionality, type, size, colour coding, package, symbol, cost etc. [Active, Passive, Electrical, Electronic, Electro-mechanical, Wires, Cables, Connectors, Fuses, Switches, Relays, Crystals, Displays, Fasteners, Heat sink etc.)

- **2.** Drawing of electronic circuit diagrams using BIS/IEEE symbols and introduction to EDA tools (such as Dia or XCircuit), Interpret data sheets of discrete components and IC's, Estimation and costing.
- **3.** Familiarization/Application of testing instruments and commonly used tools. [Multimeter, Function generator, Power supply, DSO etc.] [Soldering iron, Desoldering pump, Pliers, Cutters, Wire strippers, Screw drivers, Tweezers, Crimping tool, Hot air soldering and desoldering station etc.]
- **4.** Testing of electronic components [Resistor, Capacitor, Diode, Transistor and JFET using multimeter.]
- 5. Inter-connection methods and soldering practice. [Bread board, Wrapping, Crimping, Soldering types selection of materials and safety precautions, soldering practice in connectors and general purpose PCB, Crimping.]
- **6.** Printed circuit boards (PCB) [Types, Single sided, Double sided, PTH, Processing methods, Design and fabrication of a single sided PCB for a simple circuit with manual etching (Ferric chloride) and drilling.]
- 7. Assembling of electronic circuits using SMT (Surface Mount Technology) stations.
- **8.** Assembling of electronic circuit/system on general purpose PCB, test and show the functioning (**Any Two circuits**).
 - Fixed voltage power supply with transformer, rectifier diode, capacitor filter, zener/IC regulator.
 - 2. Square wave generation using IC 555 timer in IC base.
 - 3. Sine wave generation using IC 741 OP-AMP in IC base.
 - **4.** RC coupled amplifier with transistor BC107.

CYL	ENGINEERING CHEMISTRY LAB	CATEGORY	L	Т	Р	CREDIT
120		BSC	0	0	2	1

Preamble: To impart scientific approach and to familiarize with the experiments in chemistry relevant for research projects in higher semesters

Prerequisite: Experiments in chemistry introduced at the plus two levels in schools

Course outcomes: After the completion of the course the students will be able to

CO 1	Understand and practice different techniques of quantitative chemical analysis to
	generate experimental skills and apply these skills to various analyses
CO 2	Develop skills relevant to synthesize organic polymers and acquire the practical skill to
	use TLC for the identification of drugs
CO 3	Develop the ability to understand and explain the use of modern spectroscopic
	techniques for analysing and interpreting the IR spectra and NMR spectra of some
	organic compounds
CO 4	Acquire the ability to understand, explain and use instrumental techniques for chemical
	analysis
CO 5	Learn to design and carry out scientific experiments as well as accurately record and
	analyze the results of such experiments
CO 6	Function as a member of a team, communicate effectively and engage in further
	learning. Also understand how ch <mark>e</mark> mistry addresses social, economical and
	environmental problems and why it is an integral part of curriculum

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO
						75-		711		10	11	12
CO 1	3				2							3
CO 2	3				3							3
CO 3	3				3	-(1)						3
CO 4	3				3							3
CO 5	3				1							3
CO 6	3				1							3

Mark distribution

Total Marks	CIE	ESE	ESE
	marks	marks	Duration(Internal)
100	100	-	1 hour

Continuous Internal Evaluation Pattern:

Attendance : 20 marks

Class work/ Assessment/Viva-voce : 50 marks

End semester examination (Internally by college) : 30 marks

End Semester Examination Pattern: Written Objective Examination of one hour

SYLLABUS

LIST OF EXPERIMENTS (MINIMUM 8 MANDATORY)

- 1. Estimation of total hardness of water-EDTA method
- 2. Potentiometric titration
- 3. Determination of cell constant and conductance of solutions.
- 4. Calibration of pH meter and determination of pH of a solution
- 5. Estimation of chloride in water
- 6. Identification of drugs using TLC
- 7. Determination of wavelength of absorption maximum and colorimetric estimation of Fe³⁺ in solution
- 8. Determination of molar absorptivity of a compound (KMnO₄ or any water soluble food colorant)
- 9. Synthesis of polymers (a) Urea-formaldehyde resin (b) Phenol-formaldehyde resin
- 10. Estimation of iron in iron ore
- 11. Estimation of copper in brass
- 12. Estimation of dissolved oxygen by Winkler's method
- 13. (a) Analysis of IR spectra (minimum 3 spectra) (b) Analysis of ¹H NMR spectra minimum 3 spectra)
- 14. Flame photometric estimation of Na⁺ to find out the salinity in sand
- 15. Determination of acid value of a vegetable oil
- 16. Determination of saponification of a vegetable oil

Reference Books

- 1. G. Svehla, B. Sivasankar, "Vogel's Qualitative Inorganic Analysis", Pearson, 2012.
- 2. R. K. Mohapatra, "Engineering Chemistry with Laboratory Experiments", PHI Learning, 2017.
- 3. Muhammed Arif, "Engineering Chemistry Lab Manual", Owl publishers, 2019.
- 4. Ahad J., "Engineering Chemistry Lab manual", Jai Publications, 2019.
- 5. Roy K Varghese, "Engineering Chemistry Laboratory Manual", Crownplus Publishers, 2019.
- 6. Soney C George, Rino Laly Jose, "Lab Manual of Engineering Chemistry", S. Chand & Company Pvt Ltd, New Delhi, 2019.

PHL 120	ENGINEERING PHYSICS LAB	CATEGORY	L	Т	P	CREDIT	YEAR OF INTRODUCTION
		BSC	0	0	2	1	2019

Preamble: The aim of this course is to make the students gain practical knowledge to co-relate with the theoretical studies and to develop practical applications of engineering materials and use the principle in the right way to implement the modern technology.

Prerequisite: Higher secondary level Physics

Course Outcomes: After the completion of the course the student will be able to

CO 1	Develop analytical/experimental skills and impart prerequisite hands on experience for engineering laboratories
CO 2	Understand the need for precise measurement practices for data recording
CO 3	Understand the principle, concept, working and applications of relevant technologies and comparison of results with theoretical calculations
CO 4	Analyze the techniques and skills associated with modern scientific tools such as lasers and fiber optics
CO 5	Develop basic communication skills through working in groups in performing the laboratory experiments and by interpreting the results

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3				3	1.114		1	2			1
CO 2	3				3			1	2			1
CO 3	3				3			1	2			1
CO 4	3				3			1	2			1
CO 5	3				3	7-1-1		1	2			1

Mark distribution

Total Marks	CIE	ESE	ESE Duration/Internal)
	Marks	Marks	Duration(Internal)
100	100	-	1 hour

Continuous Internal Evaluation Pattern:

Attendance : 20 marks
Class work/ Assessment / Viva-voce : 50 marks
End semester examination (Internally by college) : 30 marks

End Semester Examination Pattern: Written Objective Examination of one hour

SYLLABUS

LIST OF EXPERIMENTS

(Minimum 8 experiments should be completed)

- 1. CRO-Measurement of frequency and amplitude of wave forms
- 2. Measurement of strain using strain gauge and wheatstone bridge
- 3. LCR Circuit Forced and damped harmonic oscillations
- 4. Melde's string apparatus- Measurement of frequency in the transverse and longitudinal mode
- 5. Wave length measurement of a monochromatic source of light using Newton's Rings method.
- 6. Determination of diameter of a thin wire or thickness of a thin strip of paper using air wedge method.
- 7. To measure the wavelength using a millimeter scale as a grating.
- 8. Measurement of wavelength of a source of light using grating.
- 9. Determination of dispersive power and resolving power of a plane transmission grating
- 10. Determination of the particle size of lycopodium powder
- 11. Determination of the wavelength of He-Ne laser or any standard laser using diffraction grating
- 12. Calculate the numerical aperture and study the losses that occur in optical fiber cable.
- 13.I-V characteristics of solar cell.
- 14.LED Characteristics.
- 15. Ultrasonic Diffractometer- Wavelength and velocity measurement of ultrasonic waves in a liquid
- **16.** Deflection magnetometer-Moment of a magnet- Tan A position.

Reference books

- 1. S.L.Gupta and Dr.V.Kumar, "Practical physics with viva voice", Pragati PrakashanPublishers, Revised Edition, 2009
- 2. M.N.Avadhanulu, A.A.Dani and Pokely P.M, "Experiments in Engineering Physics", S.Chand&Co,2008
- 3. S. K. Gupta, "Engineering physics practicals", Krishna Prakashan Pvt. Ltd., 2014
- 4. P. R. Sasikumar "Practical Physics", PHI Ltd., 2011.

ELECTRONICS AND COMMUNICATION ENGINEERING

ECT201	SOLID STATE DEVICES	CATEGORY		T	P	CREDIT
		PCC	3	1	0	4

Preamble: This course aims to understand the physics and working of solid state devices.

Prerequisite: EST130 Basics of Electrical and Electronics Engineering

Course Outcomes: After the completion of the course the student will be able to

CO 1	Apply Fermi-Dirac Distribution function and Compute carrier concentration at					
	equilibrium and the parameters associated with generation, recombination and transport					
	mechanism					
CO 2	Explain drift and diffusion currents in extrinsic semiconductors and Compute current					
	density due to these effects.					
CO 3	Define the current components and derive the current equation in a pn junction diode and					
	bipolar junction transistor.					
CO 4	Explain the basic MOS physics and derive the expressions for drain current in linear and					
004	saturation regions.					
	Saturation regions.					
CO 5	Discuss scaling of MOSFETs and short channel effects.					

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO (PO 7	PO 8	PO 9	PO	PO	PO
				1						10	11	12
CO	3	3						-	1		- 1	
1												
CO	3	3										
2					100			8				
CO	3	3			7/	Esti						
3				111		the control	4 4	133				
CO	3	3				-				W.		
4										<i>(</i>		
CO	3		1									
5							-	118				

Assessment Pattern

Bloom's Category	Continuous Assessment Tests		End Semester Examination		
	1	2			
Remember	10	10	20		
Understand	25	25	50		
Apply	15	15	30		
Analyse					
Evaluate					
Create					

ELECTRONICS AND COMMUNICATION ENGINEERING

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks

Continuous Assessment Test (2 numbers) : 25 marks Assignment/Quiz/Course project : 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Compute carrier concentration at equilibrium and the parameters associated with generation, recombination and transport mechanism

- 1. Derive the expression for equilibrium electron and hole concentration.
- 2. Explain the different recombination mechanisms
- 3. Solve numerical problems related to carrier concentrations at equilibrium, energy band diagrams and excess carrier concentrations in semiconductors.

Course Outcome 2 (CO2): Compute current density in extrinsic semiconductors in specified electric field and due to concentration gradient.

- 1. Derive the expression for the current density in a semiconductor in response to the applied electric field.
- 2. Derive the expression for diffusion current in semiconductors.
- 3. Show that diffusion length is the average distance a carrier can diffuse before recombining.

Course Outcome 3 (CO3): Define the current components and derive the current equation in a pn junction diode and bipolar junction transistor.

- 1. Derive ideal diode equation.
- 2. Derive the expression for minority carrier distribution and terminal currents in a BJT.

ELECTRONICS AND COMMUNICATION ENGINEERING

3. Solve numerical problems related to PN junction diode and BJT.

Course Outcome 4 (CO4): Explain the basic MOS physics with specific reference on MOSFET characteristics and current derivation.

- 1. Illustrate the working of a MOS capacitor in the three different regions of operation.
- 2. Explain the working of MOSFET and derive the expression for drain current.
- 3. Solve numerical problems related to currents and parameters associated with MOSFETs.

Course Outcome 5 (CO5): Discuss the concepts of scaling and short channel effects of MOSFET.

- 1. Explain the different MOSFET scaling techniques.
- 2. Explain the short channel effects associated with reduction in size of MOSFET.

SYLLABUS

MODULE I

Elemental and compound semiconductors, Intrinsic and Extrinsic semiconductors, concept of effective mass, Fermions-Fermi Dirac distribution, Fermi level, Doping & Energy band diagram, Equilibrium and steady state conditions, Density of states & Effective density of states, Equilibrium concentration of electrons and holes.

Excess carriers in semiconductors: Generation and recombination mechanisms of excess carriers, quasi Fermi levels.

MODULE II

Carrier transport in semiconductors, drift, conductivity and mobility, variation of mobility with temperature and doping, Hall Effect.

Diffusion, Einstein relations, Poisson equations, Continuity equations, Current flow equations, Diffusion length, Gradient of quasi Fermi level

MODULE III

PN junctions: Contact potential, Electrical Field, Potential and Charge distribution at the junction, Biasing and Energy band diagrams, Ideal diode equation.

Metal Semiconductor contacts, Electron affinity and work function, Ohmic and Rectifying Contacts, current voltage characteristics.

Bipolar junction transistor, current components, Transistor action, Base width modulation.

MODULE IV

Ideal MOS capacitor, band diagrams at equilibrium, accumulation, depletion and inversion, threshold voltage, body effect, MOSFET-structure, types, Drain current equation (derive)-linear and saturation region, Drain characteristics, transfer characteristics.

MODULE V

MOSFET scaling – need for scaling, constant voltage scaling and constant field scaling.

Sub threshold conduction in MOS.

Short channel effects- Channel length modulation, Drain Induced Barrier Lowering, Velocity Saturation, Threshold Voltage Variations and Hot Carrier Effects.

Non-Planar MOSFETs: Fin FET -Structure, operation and advantages

Text Books

- 1. Ben G. Streetman and Sanjay Kumar Banerjee, Solid State Electronic Devices, Pearson 6/e, 2010 (Modules I, II and III)
- 2. Sung Mo Kang, CMOS Digital Integrated Circuits: Analysis and Design, McGraw-Hill, Third Ed., 2002 (Modules IV and V)

Reference Books

- 1. Neamen, Semiconductor Physics and Devices, McGraw Hill, 4/e, 2012
- 2. Sze S.M., Semiconductor Devices: Physics and Technology, John Wiley, 3/e, 2005
- 3. Pierret, Semiconductor Devices Fundamentals, Pearson, 2006
- 4. Sze S.M., Physics of Semiconductor Devices, John Wiley, 3/e, 2005
- 5. Achuthan, K N Bhat, Fundamentals of Semiconductor Devices, 1e, McGraw Hill, 2015
- 6. Yannis Tsividis, Operation and Modelling of the MOS Transistor, Oxford University Press.
- 7. Jan M.Rabaey, Anantha Chandrakasan, Borivoje Nikolic, Digital Integrated Circuits A Design Perspective, PHI.

Course Contents and Lecture Schedule

Course	Contents and Lecture Schedule	
No	Topic No. of	Lectures
1	MODULE 1	
1.1	Elemental and compound semiconductors, Intrinsic and Extrinsic	2
	semiconductors, Effective mass	
1.2	Fermions-Fermi Dirac distribution, Fermi level, Doping & Energy band	2
	diagram,	
1.3	Equilibrium and steady state conditions, Density of states & Effective	1
	density of states	
1.4	Equilibrium concentration of electrons and holes.	1
1.5	Excess carriers in semiconductors: Generation and recombination	2
	mechanisms of excess carriers, quasi Fermi levels.	
1.6	TUTORIAL	2
1.0	TOTORIAL	2
2	MODIUE 2	
2	MODULE 2	
2.1	Carrier transport in semiconductors, drift, conductivity and mobility,	2
	Currer dunsport in semiconductors, drift, conductivity and mobility,	

	variation of mobility with temperature and doping.	
2.2	Diffusion equation	1
2.3	Einstein relations, Poisson equations	1
2.4	Poisson equations, Continuity equations, Current flow equations	
2.5	Diffusion length, Gradient of quasi Fermi level	1
2.6	TUTORIAL	2
2.0	TOTORIAL	
3	MODULE 3	
3.1	PN junctions : Contact potential, Electrical Field, Potential and Charge	2
J.1	distribution at the junction, Biasing and Energy band diagrams,	_
2.2		1
3.2	Ideal diode equation	1
3.3	Metal Semiconductor contacts, Electron affinity and work function,	3
	Ohmic and Rectifying Contacts, current voltage characteristics.	
3.4	Bipolar junction transistor – working,, current components, Transistor	2
	action, Base width modulation.	_
3.5	Derivation of terminal currents in BJT	2
3.6	TUTORIAL	1
4	MODULE 4	
4.1	Ideal MOS capacitor, band diagrams at equilibrium, accumulation,	2
	depletion and inversion	
4.2	Threshold voltage, body effect	1
4.3	MOSFET-structure, working, types,	2
4.4	Drain current equation (derive)- linear and saturation region, Drain	2
	characteristics, transfer characteristics.	
4.5	TUTORIAL	1
5	MODULE 5	
5.1	MOSFET scaling – need for scaling, constant voltage scaling and	2
	constant field scaling.	
5.2	Sub threshold conduction in MOS,	1
5.3	Short channel effects- Channel length modulation, Drain Induced Barrier	3
	Lowering, Velocity Saturation, Threshold Voltage Variations and Hot Carrier	
	Effects.	
5.4	Non-Planar MOSFETs: Fin FET –Structure, operation and advantages	1
	2014	

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

MODEL QUESTION PAPER

ECT 201 SOLID STATE DEVICES

Time: 3 hours

PART A

Answer all questions. Each question carries 3 marks.

- 1. Draw the energy band diagram of P type and N type semiconductor materials, clearly indicating the different energy levels.
- 2. Indirect recombination is a slow process. Justify
- 3. Explain how mobility of carriers vary with temperature.
- 4. Show that diffusion length is the average length a carrier moves before recombination.
- 5. Derive the expression for contact potential in a PN junction diode.
- 6. Explain Early effect? Mention its effect on terminal currents of a BJT.
- 7. Derive the expression for threshold voltage of a MOSFET.
- 8. Explain the transfer characteristics of a MOSFET in linear and saturation regions.
- 9. Explain Subthreshold conduction in a MOSFET. Write the expression for Subthreshold
- 10. Differentiate between constant voltage scaling and constant field scaling

PART B

Answer *any one* question from each module. Each question carries 14 marks.

MODULE I

11. (a) Derive law of mass action.

(8 marks)

- (b) An n-type Si sample with $N_d = 10^5$ cm⁻³ is steadily illuminated such that $g_{op} = 10^{21}$ EHP/cm³ s. If $\tau_n = \tau_p = 1\mu s$ for this excitation. Calculate the separation in the Quasi-Fermi levels (F_n-F_p). Draw the Energy band diagram.. (6 marks)
- **12.** (a) Draw and explain Fermi Dirac Distribution function and position of Fermi level in intrinsic and extrinsic semiconductors. (8 marks)
 - (b) The Fermi level in a Silicon sample at 300 K is located at 0.3 eV below the bottom of the conduction band. The effective densities of states N_C = 3.22 X 10^{19} cm⁻³ and N_V =1.83 x 10^{19} cm⁻³. Determine (a) the electron and hole concentrations at 300K (b) the intrinsic carrier concentration at 400 K. (6 marks)

MODULE II

- **13.** (a) Derive the expression for mobility, conductivity and Drift current density in a semiconductor. (8 marks)
 - (b) A Si bar 0.1 μ m long and 100 μ m² in cross-sectional area is doped with 10¹⁷ cm⁻³ phosphorus. Find the current at 300 K with 10 V applied. (b). How long will it take an average electron to drift 1 μ m in pure Si at an electric field of 100 V/cm? (6 marks)
- 14. (a) A GaAs sample is doped so that the electron and hole drift current densities are equal in an applied electric field. Calculate the equilibrium concentration of electron and hole, the net doping and the sample resistivity at 300 K. Given $\mu_n = 8500 \text{ cm}^2/\text{Vs}$, $\mu_p = 400 \text{ cm}^2/\text{Vs}$, $n_i = 1.79 \times 10^6 \text{ cm}^{-3}$. (7 marks)
 - (b) Derive the steady-state diffusion equations in semiconductors. (6 marks)

MODULE III

- (a) Derive the expression for ideal diode equation. State the assumptions used. (9 marks) (b) Boron is implanted into an n-type Si sample ($N_d = 10^{16} \text{cm}^{-3}$), forming an abrupt junction of square cross section with area = 2 x 10^{-3} cm². Assume that the acceptor concentration in the p-type region is $N_a = 4 \times 10^{18}$ cm⁻³. Calculate V_0 , W, Q+, and E_0
 - for this junction at equilibrium (300 K). (5 marks)
- **16.** With the aid of energy band diagrams, explain how a metal N type Schottky contact function as rectifying and ohmic contacts. (14 marks)

MODULE IV

- 17. (a) Starting from the fundamentals, derive the expression for drain current of a MOSFET in the two regions of operation. (8 Marks)
 - (b) Find the maximum depletion width, minimum capacitance C_i , and threshold voltage for an ideal MOS capacitor with a 10-nm gate oxide (SiO₂) on p-type Si with N_a = 10^{16} cm⁻³. (b) Include the effects of flat band voltage, assuming an n + polysilicon gate and fixed oxide charge of 5×10^{10} q (C/cm²). (6 marks)
- 18. (a) Explain the CV characteristics of an ideal MOS capacitor (8 Marks) (b) For a long channel n-MOSFET with W = 1V, calculate the V_G required for an $I_{D(sat.)}$ of
 - 0.1 mA and $V_{D(sat.)}$ of 5V. Calculate the small-signal output conductance g and V the transconductance $g_{m(sat.)}$ at V_D = 10V. Recalculate the new I_D for $(V_G V_T)$ = 3 and V_D = 4V.

MODULE V

- **19.** Explain Drain induced barrier lowering, Velocity Saturation, Threshold Voltage Variations and Hot Carrier Effects associated with scaling down of MOSFETs (14 marks)
- **20.** With the aid of suitable diagrams explain the structure and working of a FINFET. List its advantages (14 marks)

ECT 203	LOGIC CIRCUIT DESIGN	CATEGORY	L	Т	P	CREDIT
		PCC	3	1	0	4

Preamble: This course aims to impart the basic knowledge of logic circuits and enable students to apply it to design a digital system.

Prerequisite: EST130 Basics of Electrical and Electronics Engineering

Course Outcomes: After the completion of the course the student will be able to

_	
CO 1	Explain the elements of digital system abstractions such as digital representations of
	information, digital logic and Boolean algebra
CO ₂	Create an implementation of a combinational logic function described by a truth table
	using and/or/inv gates/ muxes
CO3	Compare different types of logic families with respect to performance and efficiency
CO 4	Design a sequential logic circuit using the basic building blocks like flip-flops
CO ₅	Design and analyze combinational and sequential logic circuits through gate level
	Verilog models.

Mapping of course outcomes with program outcomes

	РО	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO8	PO 9	РО	РО	PO 12
	1			N						10	11	
CO 1	3	3										
CO 2	3	3	3						1			
CO 3	3	3	-			1		3				
CO 4	3	3	3									
CO 5	3	3	3		3		-					

Assessment Pattern

Bloom's Category	Continuous Ass	essment Tests	End Semester Examination			
	1	2				
Remember	10	10	10			
Understand	20	20	20			
Apply	20	20	70			
Analyse						
Evaluate	746	W. P.				
Create	- 19					

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks
Continuous Assessment Test (2 numbers) : 25 marks
Course project : 15 marks

It is mandatory that a *course project* shall be undertaken by a student for this subject. The course project can be performed either as a hardware realization/simulation of a typical digital system using combinational or sequential logic. Instead of two assignments, two evaluations may be performed on the course project along with series tests, each carrying 5 marks. Upon successful completion of the project, a brief report shall be submitted by the student which shall be evaluated for 5 marks. The report has to be submitted for academic auditing. A few samples projects are given below:

Sample course projects:

- **1. M-Sequence Generator** Psuedo random sequences are popularly used in wireless communication. A sequence generator is used to produce pseudo random codes that are useful in spread spectrum applications. Their generation relies on irreducible polynomials. A maximal length sequence generator that relies on the polynomial $P(D) = D^7 + D^3 + 1$, with each D represent delay of one clock cycle.
 - An 8-bit shift register that is configured as a ring counter may be used realize the above equation.
 - This circuit can be developed in verilog, simulated, synthesized and programmed into a tiny FPGA and tested in real time.
 - Observe the M-sequnce from parallel outputs of shift register for one period . Count the number of 1s and zeros in one cycle.
 - Count the number of runs of 1s in singles, pairs, quads etc. in the pattern.

2. BCD Subtractor

- Make 4 -bit parallel adder circuit in verilog.
- Make a one digit BCD subtracter in Verilog, synthesize and write into a tiny FPGA.
- Test the circuit with BCD inputs.

3. Digital Thermometer

- Develop a circuit with a temperature sensor and discrete components to measure and dispaly temperature.
- Solder the circuit on PCB and test it.

4. Electronic Display

- ESTO.
- This display should receive the input from an alphanumeric keyboard and display it on an LCD diplay.
- The decoder and digital circuitry is to developed in Verilog and programmed into a tiny FPGA.

5. Electronic Roulette Wheel

- 2014
- 32 LEDs are placed in a circle and numbered that resembles a roulette wheel.
- A 32-bit shift register generates a random bit pattern with a single 1 in it.
- When a push button is pressed the single 1 lights one LED randomly.
- Develop the shift register random pattern generator in verilog and implement on a tiny FPGA and test the circuit.

6. Three Bit Carry Look Ahead Adder

- Design the circuit of a three bit carry look ahead adder.
- Develop the verilog code for it and implement and test it on a tiny FPGA. item Compare the performance with a parallel adder.

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks. The questions on verlog modelling should not have a credit more than 25% of the whole mark.

Course Level Assessment Questions

Course Outcome 1 (CO1): Number Systems and Codes

- 1. Consider the signed binary numbers A = 01000110 and B = 11010011 where B is in 2's complement form. Find the value of the following mathematical expression (i) A + B (ii) A B
- 2. Perform the following operations (i)D9CE₁₆-CFDA₁₆(ii) 6575₈-5732₈
- 3. Convert decimal 6,514 to both BCD and ASCII codes. For ASCII, an even parity bit is to be appended at the left.

Course Outcome 2 (CO2): Boolean Postulates and combinational circuits

- 1. Design a magnitude comparator to compare two 2-bit numbers $A = A_1A_0$ and $B = B_1B_0B$
- 2. Simplify using K-map $F(a,b,c,d) = \Sigma$ m (4,5,7,8,9,11,12,13,15)
- 3. Explain the operation of a 8x1 multiplexer and implement the following using an 8x1 multiplexer $F(A, B, C, D) = \Sigma m (0, 1, 3, 5, 6, 7, 8, 9, 11, 13, 14)$

Course Outcome 3 (CO3): Logic families and its characteristics

- 1. Define the terms noise margin, propagation delay and power dissipation of logic families. Compare TTL and CMOS logic families showing the values of above mentioned terms.
- 2. Draw the circuit and explain the operation of a TTL NAND gate
- 3. Compare TTL, CMOS logic families in terms of fan-in, fan-out and supply voltage

Course Outcome 4 (CO4): Sequential Logic Circuits

- 1. Realize a T flip-flop using NAND gates and explain the operation with truth table, excitation table and characteristic equation
- 2. Explain a MOD 6 asynchronous counter using JK Flip Flop
- 3. Draw the logic diagram of 3 bit PIPO shift register with LOAD/SHIFT control and explain its working

Course Outcome 5 (CO5): Logic Circuit Design using HDL

- 1. Design a 4-to-1 mux using gate level Verilog model.
- 2. Design a verilog model for a hald adder circuit. Make a one bit full adder by connecting two half adder models.
- 3. Compare concurrent signal assignment versus sequential signal assignment.

Syllabus

Module 1: Number Systems and Codes:

Binary and hexadecimal number systems; Methods of base conversions; Binary and hexadecimal arithmetic; Representation of signed numbers; Fixed and floating point numbers; Binary coded decimal codes; Gray codes; Excess 3 code. Alphanumeric codes: ASCII. Basics of verilog -- basic language elements: identifiers, data objects, scalar data types, operators.

Module 2: Boolean Postulates and Fundamental Gates

Boolean postulates and laws – Logic Functions and Gates De-Morgan's Theorems, Principle of Duality, Minimization of Boolean expressions, Sum of Products (SOP), Product of Sums (POS), Canonical forms, Karnaugh map Minimization. Modeling in verilog, Implementation of gates with simple verilog codes.

Module 3: Combinatorial and Arithmetic Circuits

Combinatorial Logic Systems - Comparators, Multiplexers, Demultiplexers, Encoder, Decoder. Half and Full Adders, Subtractors, Serial and Parallel Adders, BCD Adder. Modeling and simulation of combinatorial circuits with verilog codes at the gate level.

Module 4: Sequential Logic Circuits:

Building blocks like S-R, JK and Master-Slave JK FF, Edge triggered FF, Conversion of Flipflops, Excitation table and characteristic equation. Implementation with verilog codes. Ripple and Synchronous counters and implementation in verilog, Shift registers-SIPO, SISO, PISO, PIPO. Shift Registers with parallel Load/Shift, Ring counter and Johnsons counter. Asynchronous and Synchronous counter design, Mod N counter. Modeling and simulation of flipflops and counters in verilog.

Module 5: Logic families and its characteristics:

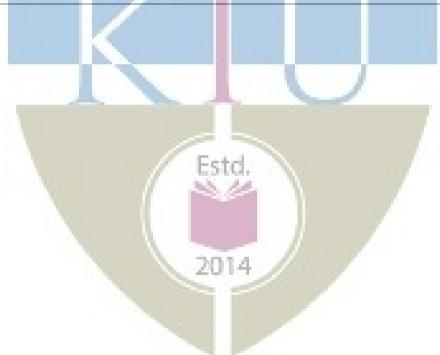
TTL, ECL, CMOS - Electrical characteristics of logic gates – logic levels and noise margins, fan-out, propagation delay, transition time, power consumption and power-delay product. TTL inverter - circuit description and operation; CMOS inverter - circuit description and operation; Structure and operations of TTL and CMOS gates; NAND in TTL and CMOS, NAND and NOR in CMOS.

Text Books

- 1. Mano M.M., Ciletti M.D., "Digital Design", Pearson India, 4th Edition. 2006
- 2. D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989

- 3. S. Brown, Z. Vranesic, "Fundamentals of Digital Logic with Verilog Design", McGraw Hill
- 4. Samir Palnikar"Verilog HDL: A Guide to Digital Design and Syntheis", Sunsoft Press
- 5. R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th edition, 2009

Reference Books


- 1. W.H. Gothmann, "Digital Electronics An introduction to theory and practice", PHI, 2nd edition ,2006
- 2. Wakerly J.F., "Digital Design: Principles and Practices," Pearson India, 4th 2008
- 3. A. Ananthakumar ,"Fundamentals of Digital Circuits", Prentice Hall, 2nd edition, 2016
- 4. Fletcher, William I., An Engineering Approach to Digital Design, 1st Edition, Prentice Hall India, 1980

Course Contents and Lecture Schedule

No	Topic No. of L	ectures
1	Number Systems and Codes:	
1.1	Binary, octal and hexadecimal number systems; Methods of base	2
	conversions;	
1.2	Binary, octal and hexadecimal arithmetic;	1
1.3	Representation of signed numbers; Fixed and floating point numbers;	3
1.4	Binary coded decimal codes; Gray codes; Excess 3 code :	1
1.5	Error detection and correction codes - parity check codes and Hamming	3
	code-Alphanumeric codes:ASCII	
1.6	Verilog basic language elements: identifiers, data objects, scalar data types,	2
	operators Estal	
	- Later	
2	Boolean Postulates and Fundamental Gates:	
2.1	Boolean postulates and laws – Logic Functions and Gates, De-Morgan's	2
	Theorems, Principle of Duality	
2.2	Minimization of Boolean expressions, Sum of Products (SOP), Product of	2
	Sums (POS)	
2.3	Canonical forms, Karnaugh map Minimization	1
2.4	Gate level modelling in Verilog: Basic gates, XOR using NAND and NOR	2
3	Combinatorial and Arithmetic Circuits	
3.1	Combinatorial Logic Systems - Comparators, Multiplexers, Demultiplexers	2
3.2	Encoder, Decoder, Half and Full Adders, Subtractors, Serial and Parallel	3
	Adders, BCD Adder	

3.3	Gate level modelling combinational logic circuits in Verilog: half adder, full	3
ر.5		٥
	adder, mux, demux, decoder, encoder	
4	Sequential Logic Circuits:	
4.1	Building blocks like S-R, JK and Master-Slave JK FF, Edge triggered FF	2
4.2	Conversion of Flipflops, Excitation table and characteristic equation.	1
4.3	Ripple and Synchronous counters, Shift registers-SIPO.SISO,PISO,PIPO	2
4.4	Ring counter and Johnsons counter, Asynchronous and Synchronous	3
	counter design	
4.5	Mod N counter, Random Sequence generator	1
4.6	Modelling sequential logic circuits in Verilog: flipflops, counters	2
	THE INCLUDE AL	
5	Logic families and its characteristics:	
	" IIIVFRNIY	
5.1	TTL,ECL,CMOS- Electrical characteristics of logic gates – logic levels and	3
	noise margins, fan-out, propagation delay, transition time, power	
	consumption and power-delay product.	
5.2		1
	TTL inverter - circuit description and operation	
5.3	CMOS inverter - circuit description and operation	1
5.4	Structure and operations of TTL and CMOS gates; NAND in TTL, NAND	2
	and NOR in CMOS.	
	dilu Ivor ili Givios.	

Simulation Assignments (ECT203)

The following simulations can be done in QUCS, KiCad or PSPICE.

BCD Adder

- Realize a one bit paraller adder, simulate and test it.
- Cascade four such adders to form a four bit parallel adder.
- Simulate it and make it into a subcircuit.
- Develop a one digit BCD adder, based on the subcircuit, simulate and test it

BCD Subtractor

- Use the above 4-bit adder subcircuit, implement and simulate a one digit BCD subtractor.
- Test it with two BCD inputs

Logic Implementation with Multiplexer

- Develop an 8:1 multiplexer using gates, simulate, test and make it into a subcircuit.
- Use this subcircuit to implement the logic function $f(A, B, C) = \sum m(1, 3, 7)$
- Modify the truth table properly and implement the logic function $f(A, B, C, D) = \sum m(1, 4, 12, 14)$ using one 8:1 multiplexer.

BCD to Seven Segment Decoder

• Develop a BCD to seven segment decoder using gates and make it into a subcircuit.

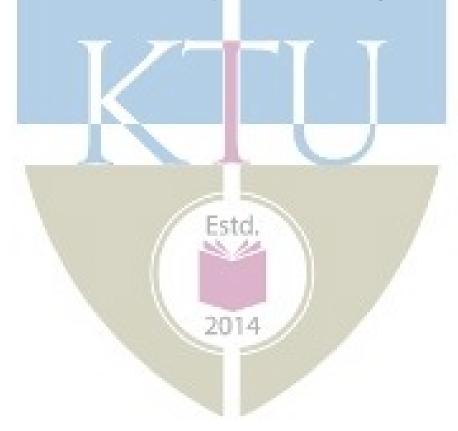
2014

• simulate this and test it

Ripple Counters

- Understand the internal circuit of 7490 IC and develop it in the simulator.
- Make it into a subcircuit and simulate it. Observe the truth table and timing diagrams for mod-5, mod-2 and mod-10 operation.
- Develop a mod-40 (mod-8 and mod-5) counter by cascading two such subcircuits.
- Simulate and observe the timing diagram and truth table.

Synchronous Counters


- Design and develop a 4-bit synchronous counter using J-K flip-flops.
- Perform digital simulation and observe the timing diagram and truth table.

Sequence Generator

- Connect D flip-flops to realize and 8-bit shift register and make it into a subcircuit.
- sequence generator that relies on the polynomial $P(D) = D_7 + D_3 + 1$, with each D represent delay of one clock cycle
- Simulate and observe this maximal length pseudo random sequence.

Transfer Characteristics of TTL and CMOS Inverters

- Develop a standard TTL circuit and perform sweep simulation and observe the transfer characteristics. Compute the threshold voltage and noise margns.
- Develop and simulate standard CMOS inverter circuit and perform sweep simulation and observe the transfer characteristics. Compute the threshold voltage and noise margins.

Model Question Paper

A P J Abdul Kalam Technological University

Third Semester B Tech Degree Examination

Branch: Electronics and Communication

Course: ECT 203 Logic Circuit Design

Time: 3 Hrs Max. Marks: 100

PART A

Answer All Questions

1	Convert 203.52 ₁₀ to binary and hexadecimal.	(3)	K_1
2	Compare bitwise and logical verilog operators	(3)	K_1
3	Prove that NAND and NOR are not associative.	(3)	K_2
4	Convert the expression ABCD+ $\overline{A}B\overline{C}$ +ACD to minterms.	(3)	K_2
5	Define expressions in Verilog with example.	(3)	K_2
6	Explain the working of a decoder.	(3)	K_1
7	What is race around condition?	(3)	K_1
8	Convert a T flip-flop to D flip-flop.	(3)	K_2
9	Define fan-in and fan-out of logic circuits.	(3)	K_2
10	Define noise margin and how can you calculate it?	(3)	K_2
	The second secon		

PART B

Answer one question from each module. Each question carries 14 mark.

2014

Module I

11(A)	Subtract 46_{10} from 100_{10} using 2's complement arithmetic.	(8)	K_2
11(B)	Give a brief description on keywords and identifiers in Ver-	(6)	K_2
	ilog with example.		

OR

1

- 12(A) Explain the floating and fixed point representation of numbers
- (8) K_2
- 12(A) Explain the differences between programming lanuguages and HDLs
- $(6) \quad K_2$

Module II

13(A) Simplify using K-map

 $(7) K_3$

$$f(A, B, C, D) = \sum m(4, 5, 7, 8, 9, 11, 12, 13, 15)$$

using K-maps

13(B) Write a Verilog code for implementing above function

(7) K_3

OR

14(A) Write a Verilog code to implement the basic gates.

(7) K_3

14(B) Reduce the following Boolean function using K-Map and implement the simplified function using the logic gates

(7) K_3

$$f(A, B, C, D) = \sum (0, \frac{1}{1}, 4, 5, 6, 8, 9, 10, 12, 13, 14)$$

Module III

15(A) Design a 3-bit magnitude comparator circuit.

(8) K_3

15(B) Write a Verilog description for a one bit full adder circuit.

(6) K_3

$_{ m OR}_{ m \perp}$

16(A) Write a verilog code to implement 4:1 multiplexer

(6) K_3

16(B) Implement the logic function

(8) K_3

$$f(A, B, C) = \sum m(0, 1, 4, 7)$$

using 8:1 and 4:1 multiplexers.

Module IV 17 Design MOD 12 asynchronous counter using T flip-flop. (14)OR Explain the operation of Master Slave JK flipflop. K_3 (7)Derive the outu Q_{n+1} in Terms of J_n , K_n and Q_n 18(B) (7) K_3 Module V 19(A)Explain in detail about TTL with open collector output con-(8) K_2 figuration. 19(B) Draw an ECL basic gate and explain. K_2 (6)OR 20(A) Demonstrate the CMOS logic circuit configuration and char-(8) K_2 acteristics in detail. 20(B)Compare the characteristics features of TTL and ECL dig-(6) K_2 ital logic families 2014

ECT205	NETWORK THEORY	CATEGORY	L	T	P	CREDIT
		PCC	3	1	0	4

Preamble: This course aims to analyze the linear time invariant electronic circuits.

Prerequisite: EST130 Basics of Electrical and Electronics Engineering

MAT102 Vector Calculus, Differential Equations and Transforms (Laplace Transform)

Course Outcomes: After the completion of the course the student will be able to

	TECTIVIOLOGICAL
CO 1	Apply Mesh / Node analysis or Network Theorems to obtain steady state response of
K 3	the linear time invariant networks.
CO 2	Apply Laplace Transforms to determine the transient behaviour of RLC networks.
K 3	CINIVELLE
CO 3	Apply Network functions and Network Parameters to analyse the single port and two
K 3	port networks.

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO	3	3			100							2
1				70								
CO	3	3		-								2
2												
CO	3	3		-								2
3				73				la.				

Assessment Pattern

Bloom's Category			Continuous Assessment Tests					End Semester Examination	
				1	365	100	2		
Remember	K1			10			10		10
Understand	K2	400		20			20		20
Apply	КЗ	- 14		20	-		20		70
Analyse		- N.		N	25	2.4	- 11		
Evaluate		10.0			77	11.4	100		9
Create									

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks

Continuous Assessment Test (2 numbers) : 25 marks Assignment/Quiz/Course project : 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Obtain steady state response of the network using Mesh / Node analysis. (K3)

- 1. Enumerate different types of sources in electronic networks.
- 2. Solve networks containing independent and dependent sources using Mesh / Node analysis.
- 3. Evolve the steady-state AC analysis of a given network using Mesh or Node analysis.

Course Outcome 1 (CO1): Obtain steady state response of the network using Network Theorems. (K3)

- 1. Determine the branch current of the given network with dependent source using superposition theorem.
- 2. State and prove Maximum Power Transfer theorem.
- 3. Find the Thevenin's / Norton's equivalent circuit across the port of a given network having dependent source.

Course Outcome 2 (CO2): Determine the transient behaviour of network using Laplace Transforms (K3)

- 1. The switch is opened at t=0 after steady state is achieved in given network. Find the expression for the transient output current.
- 2. Find the Laplace Transform of a given waveform.
- 3. In the given circuit, the switch is closed at t = 0, connecting an energy source to the R,C,L circuit. At time t = 0, it is observed that capacitor voltage has a initial value. For the element values given, determine expression for output voltage after converting the circuit into transformed domain.

Course Outcome 3 (CO3): Apply Network functions to analyse the single port and two port network. (K3)

- 1. What are the necessary conditions for a network Driving point function and Transfer functions?
- 2. Evaluate the Driving point function and Transfer function for the given network,
- 3. Plot the poles and zeros of the given network.

Course Outcome 3 (CO3); Apply Network Parameters to analyse the two port network. (K3)

- 1. Deduce the transmission parameters of two port network in terms of two port network parameters.
- 2. Define the condition for a two port network to be reciprocal.
- 3. Two identical sections of the given networks are connected in parallel. Obtain the two port network parameters of the combination.

SYLLABUS

Module 1: Mesh and Node Analysis

Mesh and node analysis of network containing independent and dependent sources. Supermesh and Supernode analysis. Steady-state AC analysis using Mesh and Node analysis.

Module 2: Network Theorems

Thevenin's theorem, Norton's theorem, Superposition theorem, Reciprocity theorem, Maximum power transfer theorem. (applied to both dc and ac circuits having dependent source).

Module 3: Application of Laplace Transforms

Review of Laplace Transforms and Inverse Laplace Transforms, Initial value theorem & Final value theorem, Transformation of basic signals and circuits into s-domain. Transient analysis of RL, RC, and RLC networks with impulse, step and sinusoidal inputs (with and without initial conditions). Analysis of networks with transformed impedance and dependent sources.

Module 4 : Network functions

Network functions for the single port and two port network. Properties of driving point and transfer functions. Significance of Poles and Zeros of network functions, Time domain response from pole zero plot. Impulse Function & Response. Network functions in the sinusoidal steady state, Magnitude and Phase response.

Module 5 : Two port network Parameters

Impedance, Admittance, Transmission and Hybrid parameters of two port network. Interrelationship among parameter sets. Series and parallel connections of two port networks. Reciprocal and Symmetrical two port network. Characteristic impedance, Image impedance and propagation constant (derivation not required).

Text Books

- 1. Valkenburg V., "Network Analysis", Pearson, 3/e, 2019.
- 2. Sudhakar A, Shyammohan S. P., "Circuits and Networks- Analysis and Synthesis", McGraw Hill, 5/e, 2015.

Reference Books

- 1. Edminister, "Electric Circuits Schaum's Outline Series", McGraw-Hill, 2009.
- 2. W. Hayt, J. Kemmerly, J. Phillips, S. Durbin, "Engineering Circuit Analysis," McGraw Hill.
- 2. K. S. Suresh Kumar, "Electric Circuits and Networks", Pearson, 2008.
- 3. William D. Stanley, "Network Analysis with Applications", 4/e, Pearson, 2006.
- 4. Ravish R., "Network Analysis and Synthesis", 2/e, McGraw-Hill, 2015.

Course Contents and Lecture Schedule

No	Topic No. of	Lectures
1	Mesh and Node Analysis	
1.1	Review of circuit elements and Kirchhoff's Laws	2
1.2	Independent and dependent Sources, Source transformations	1
1.3	Mesh and node analysis of network containing independent and dependent	3
1.4	Supermesh and Supernode analysis 5 Tu	1
1.5	Steady-state AC analysis using Mesh and Node analysis	3
2	Network Theorems (applied to both dc and ac circuits having dependent so	urce)
2.1	Thevenin's theorem	1
2.2	Norton's theorem	1
2.3	Superposition theorem	2
2.4	Reciprocity theorem	1
2.5	Maximum power transfer theorem	2
3	Application of Laplace Transforms	
3.1	Review of Laplace Transforms	2
3.2	Initial value theorem & Final value theorem (Proof not necessary)	1
3.3	Transformation of basic signals and circuits into s-domain	2
3.4	Transient analysis of RL, RC, and RLC networks with impulse, step, pulse,	3
	exponential and sinusoidal inputs	

3.5	Analysis of networks with transformed impedance and dependent sources	3
4	Network functions	
4.1	Network functions for the single port and two port network	2
4.2	Properties of driving point and transfer functions	1
4.3	Significance of Poles and Zeros of network functions, Time domain	1
	response from pole zero plot	
4.4	Impulse Function & Response	1
4.5	Network functions in the sinusoidal steady state, Magnitude and Phase	3
	response	
	FCH NO OCICA	
5	Two port network Parameters	
5.1	Impedance, Admittance, Transmission and Hybrid parameters of two port	4
	network	
5.2	Interrelationship among parameter sets	1
5.3	Series and parallel connections of two port networks	2
5.4	Reciprocal and Symmetrical two port network	1
5.5	Characteristic impedance, Image impedance and propagation constant	1
	(derivation not required)	

Simulation Assignments:

Atleast one assignment should be simulation of steady state and transient analysis of R, L, C circuits with different types of energy sources on any circuit simulation software. Samples of simulation assignments are listed below. The following simulations can be done in QUCS, KiCad or PSPICE.

- 1. Make an analytical solution of Problem 4.3 in page 113 of the book *Network Analysis* by M E Van Valkenberg. Realize this circuit in the simulator and observe i(t) and $V_2(t)$ using transient simulation.
- 2. Realize a series RLC circuit with
- $R = 200\Omega$, L = 0.1H, $C = 13.33\mu F$
- $R = 200\Omega$, L = 0.1H, $C = 10\mu F$ and
- R = 200 Ω , L = 0.1H, C = 1 μ F and no source respectively. The initial voltage across the capacitor is 200V Simulate the three circuits, and observe the current i(t) through them.
- 3. Repeat the above assignment for the three set of component values for a parallel RLC circuit.
- 4. Refer Problem 9.18 in page 208 in the book *Electric Circuits* by Nahvi and Edminister 4th Edition. See Fig. 9.28. Simulate this circuit to verify superposition theorem for the three current with individual sources and combination.
- 5. Refer Problem 9.22 in page 210 in the book *Electric Circuits* by Nahvi and Edminister 4^{th} Edition. See Fig. 9.32. Implement the circuit on the simulator with V = $30 \le 30^{\circ}$. Verify the duality between the sources V and the current *I2* and *I3* using simulation.

6. See Fig. 12.40 in Chapter 12 (page 298) in the above book. Let $R1 = R2 = 2k\Omega$, L = 10mH and C = 40nF. Implement this circuit in the simulator and perform the ac analysis to plot the frequency response.

Model Question paper

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION, (Model Question Paper)

Course Code: ECT205

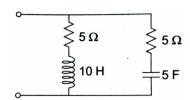
Course Name: NETWORK THEORY

Max. Marks: 100 Duration: 3 Hours

PART A

Answer ALL Questions. Each Carries 3 mark.

- 1 Illustrate the source-transformation techniques. K2
- 2 Explain the concept of supernode. K2
- 3 State and prove Maximum Power Transfer theorem K1
- 4 Evaluate the Norton's equivalent current in the following circuit. K3



5 Evaluate the Laplace Transform of half-wave rectified sine pulse. K3

- Give the two forms of transformed impedance equivalent circuit of a capacitor with K2 initial charge across it.
- 7 Enumerate necessary condition for a Network Functions to be Transfer Functions. K1
- 8 Obtain the pole zero configuration of the impedance function of the following K3 circuit.

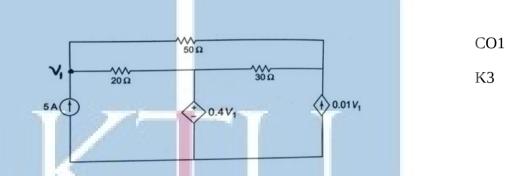
9 Define the short-circuit admittance parameter with its equivalent circuit.

K2

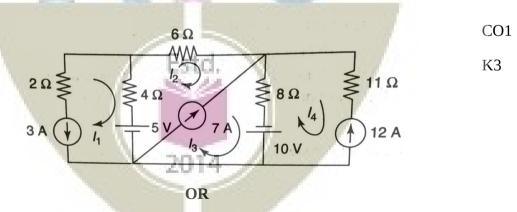
10 Deduce Z-parameter in terms of h-parameter.

K2

PART - B


Answer one question from each module; each question carries 14 marks.

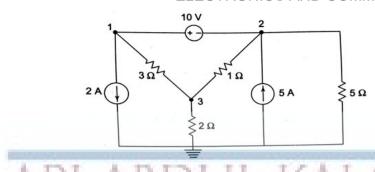
Module - I


Find the voltage V_1 using nodal analysis.

7

a.

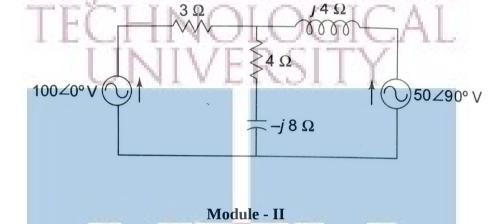
b. Find the current through 8 ohms resistor in the following circuit using mesh 7 analysis.



Find the power delivered by the 5A current source using nodal analysis method.

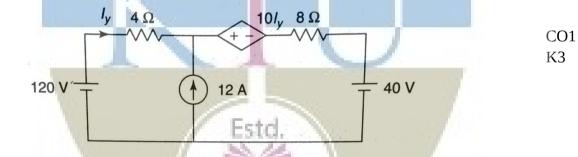
7 CO1

K3

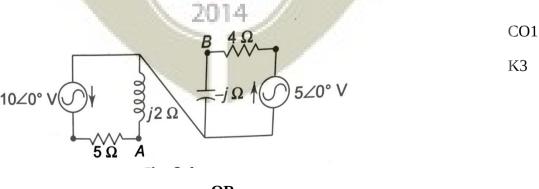


b. Determine the values of source currents using Mesh analysis

7


CO1 K3

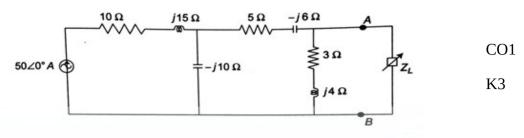
Find the current I_y by superposition principle.


7

a.

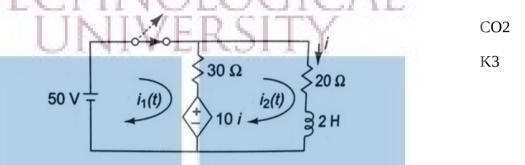
b. Find the Norton's equivalent circuit across the port AB.

7


OR

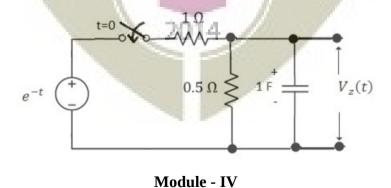
14 Determine the maximum power delivered to the load in the circuit.

14


8

Module - III

The switch is opened at t = 0 after steady state is achieved. Find the expression for

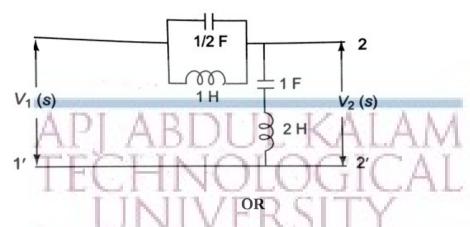

a. the transient current i.

b. A voltage pulse of unit height and width ' *T* ' is applied to a low pass RC circuit at 6 time t=0. Determine the expression for the voltage across the capacitor C as a CO2 function of time.

OR

In the circuit, the switch is closed at t=0, connecting a source e^{-t} to the RC 14 circuit. At time t=0, it is observed that capacitor voltage has the value $V_c(0)=0.5V$. For the element values given, determine $V_z(t)$ after converting the circuit into transformed domain.

For the network, determine Driving point impedance Z_{11} (s), Voltage gain Transfer 14

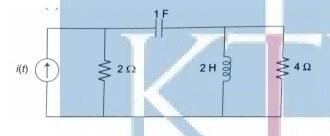


a.

ELECTRONICS AND COMMUNICATION ENGINEERING

function G_{21} (s) and Current gain Transfer function α_{21} (s).

CO3 K3


- 18 Compare and contrast the necessary conditions for a network Driving point function
- a. and Transfer functions.

CO3 K2

b. For following network, evaluate the admittance function Y(s) as seen by the source i(t). Also pot the poles and zeros of Y(s).

CO3 K3

7

Module - V

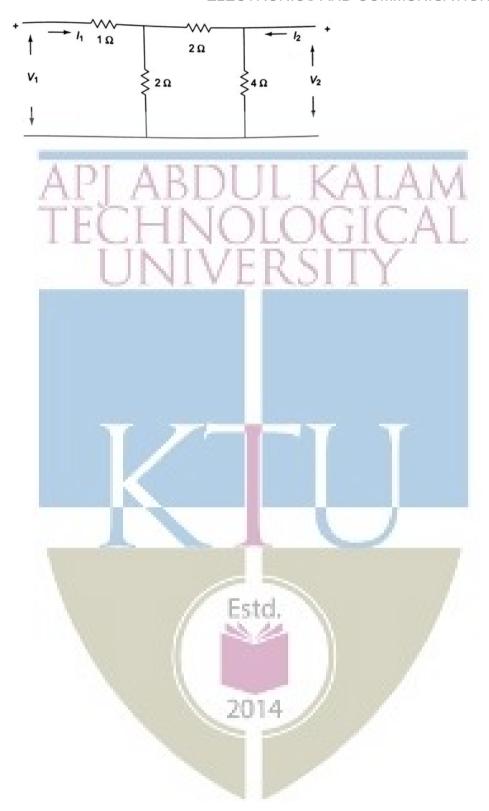
Deduce the transmission parameters of two port network in terms of

10

(i) Z-parameters, (ii) Y-parameters and (iii) Hybrid parameters.

CO4 K2

b. How to determine the given two port network is Symmetrical


4 K2

OR

Two identical sections of the following networks are connected in parallel. Obtain 14 the Y-parameters of the combination.

K3

ECL 201	SCIENTIFIC COMPUTING LABORATORY	CATEGORY	L	Т	Р	CREDIT
		PCC	0	0	3	2

Preamble

- The following experiments are designed to translate the mathematical concepts into system design.
- The students shall use Python for realization of experiments. Other softwares such as R/MATLAB/SCILAB/LabVIEW can also be used.
- The experiments will lay the foundation for future labs such as DSP lab.
- The first two experiments are mandatory and any six of the rest should be done.

Prerequisites

CO7

- MAT 101 Linear Algebra and Calculus
- MAT 102 Vector Calculus, Differential Equations and Transforms

Course	e Outcomes The student will be able to
CO 1	Describe the needs and requirements of scientific computing and to
	familiarize one programming language for scientific computing and
	data visualization.
CO 2	Approximate an array/matrix with matrix decomposition.
CO 3	Implement numerical integration and differentiation.
CO 4	Solve ordinary differential equations for engineering applications
CO 5	Compute with exported data from instruments
CO 6	Realize how periodic functions are constituted by sinusoids

Simulate random processes and understand their statistics.

Mapping of Course Outcomes with Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	0	0	0	3	1	0	3
CO2	3	3	1	2	3	0	0	0	3	0	0	1
CO3	3	3	1	1	3	0	0	0	0	0	0	1
CO4	3	3	1	1	3	0	0	0	0	0	0	1
CO5	3	3	1	3	0	0	0	0	3	3	0	0
CO6	3	3	2	2	3	0	0	0	3	1	0	0
CO7	3	3	2	2	3	0	0	0	3	1	0	1

Assessment Pattern

Mark Distribution

Total Mark	CIE	ESE	A
150	75	75	V1

Continuous Internal Evaluation Pattern

Attribute	Mark
Attendance	15
Continuous assessment	30
Internal Test (Immediately before	30
the second series test)	

End Semester Examination Pattern The following guidelines should be followed regarding award of marks.

Attribute	Mark
Preliminary work	15
Implementing the work/Conducting the experiment	10
Performance, result and inference (usage of equipments	25
and trouble shooting)	
Viva voce	20
Record	5

General instructions: End-semester practical examination is to be conducted immediately after the second series test covering entire syllabus given below. Evaluation is to be conducted under the equal responsibility of both the internal and external examiners. The number of candidates evaluated per day should not exceed 20. Students shall be allowed for the examination only on submitting the duly certified record. The external examiner shall endorse the record.

Course Level Assessment Questions

CO1-The needs and requirements of scientific computing and to familiarize one programming language for scientific computing and data visualization

- 1. Write a function to compute the first N Fibonacci numbers. Run this code and test it.
- 2. Write a function to compute the sum of N complex numbers. Run this code and test it.
- 3. Write a function to compute the factorial of an integer. Run this code and test it.

CO2-Approximation an array/matrix with matrix decomposition.

- 1. Write a function to compute the eigen values of a real valued matrix (say 5×5). Run this code. Plot the eigen values and understand their variation.
- 2. Write a function to approximate a 5×5 matrix using its first 3 eigen vales. Run the code and compute the absolute square error in the approximation.

CO3-Numerical Integration and Differentiation

- 1. Write and execute a function to return the first and second derivative of the function $f(t) = 3t^4 + 5$ for the vector t = [-3, 3].
- 2. Write and execute a function to return the value of

$$\int_{-3}^{3} e^{-|t|} dt$$

CO4-Solution of ODE

2014

1. Write and execute a function to return the numerical solution of

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 2x = e^{-t}\cos(t)$$

2. Write and execute a function to solve for the current transient through an RL network (with $\frac{r}{L} = 1$) that is driven by the signal $5e^{-t}U(t)$

CO5-Data Analysis

- 1. Connect a signal generator to DSO and display a 1V, 3kHz signal. Store the trace in a usb device as a spreadsheet. Write and execute a function to load and dispaly signal from the spreadsheet. Compute the rms value of the signal.
- 2. Write and execute a program to display random data in two dimensions as continuous and discrete plots.

CO6-Convergence of Fourier Series

1. Write the Fourier series of a traingular signal. Compute this sum for 10 and 50 terms respectively. Plot both signals on the same GUI.

CO7-Simulation of Random Phenomena

1. Write and execute a function to toss three fair coins simultaneously. Compute the probability of getting exactly two heads for 100 and 1000 number of tosses

Experiments

Experiment 1. Familarization of the Computing Tool

- 1. Needs and requirements in scientific computing
- 2. Familiarization of a programming language like Python/R/ MATLAB/SCILAB/LabVIEW for scientific computing
- 3. Familiarization of data types in the language used.
- 4. Familiarization of the syntax of while, for, if statements.
- 5. Basic syntax and execution of small scripts.

Experiment 2. Familarization of Scientific Computing

- 1. Functions with examples
- 2. Basic arithmetic functions such as abs, sine, real, imag, complex, sinc etc. using bulit in modules.
- 3. Vectorized computing without loops for fast scientific applications.

Experiment 3. Realization of Arrays and Matrices

- 1. Realize one dimensional array of real and complex numbers
- 2. stem and continuous plots of real arrays using matplotlib/GUIs/charts.
- 3. Realization of two dimensional arrays and matrices and their visualizations with *imshow/matshow/charts*
- 4. Inverse of a square matrix and the solution of the matrix equation

$$[A][X] = [b]$$

where **A** is an $N \times N$ matrix and **X** and **b** are $N \times 1$ vectors.

- 5. Computation of the rank(ρ) and eigen values (λ_i) of **A**
- 6. Approximate **A** for N=1000 with the help of singular value decomposition of **A** as

$$ilde{\mathbf{A}} = \sum_{i=0}^r \lambda_i U_i V_i^T$$

where U_i and V_i are the singular vectors and λ_i are the eigen values with $\lambda_i < \lambda_j$ for i > j. One may use the built-in functions for singular value decomposition.

7. Plot the absolute error(ζ) between **A** and $\tilde{\mathbf{A}}$ as $\zeta = \sum_{i=1}^{N} \sum_{j=1}^{N} |a_{i,j} - a_{i,j}|^2$ against r for r = 10, 50, 75, 100, 250, 500, 750 and appreciate the plot.

Experiment 4. Numerical Differentiation and Integration

- 1. Realize the functions $\sin t$, $\cos t$, $\sinh t$ and $\cosh t$ for the vector t = [0, 10] with increment 0.01
- 2. Compute the first and second derivatives of these functions using built in tools such as *grad*.
- 3. Plot the derivatives over the respective functions and appreciate.
- 4. Familiarize the numerical integration tools in the language you use.
- 5. Realize the function

$$f(t) = 4t^2 + 3$$

and plot it for the vector t = [-5, 5] with increment 0.01

6. Use general integration tool to compute

$$\int_{-2}^{2} f(t) dt$$

- 7. Repeat the above steps with trapezoidal and Simpson method and compare the results.
- 8. Compute

$$\frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-\frac{x^2}{2}} \, dx$$

using the above three methods

Experiment 5. Solution of Ordinary Differential Equations

1. Solve the first order differential equation

$$\frac{dx}{dt} + 2x = 0$$

with the initial condition x(0) = 1

- 2. Solve for the current transient through an RC network (with RC = 3) that is driven by
 - 5*V* DC
 - the signal $5e^{-t}U(t)$

and plot the solutions.

Estd.

3. Solve the second order differential equation

$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 2x = e^{-t}$$

- 4. Solve the current transient through a series RLC circuit with $R=1\Omega,$ $L=1\,mH$ and $C=1\,\mu F$ that is driven by
 - 5 V DC
 - the signal $5e^{-t}U(t)$

Experiment 6. Simple Data Visualization

- 1. Draw stem plots, line plots, box plots, bar plots and scatter plots with random data.
- 2. plot the histogram of a random data.
- 3. create legends in plots.
- 4. Realize a vector t = [-10, 10] with increment 0.01 as an array
- 5. Implement and plot the functions
 - $f(t) = \cos t$
 - $f(t) = \cos t \cos 5t + \cos 5t$

Experiment 7. Simple Data Analysis with Spreadsheets

- 1. Display an electrical signal on DSO and export it as a .csv file.
- 2. Read this .csv or .xls file as an array and plot it.
- 3. Compute the mean and standard deviation of the signal. Plot its histogram with an appropriate bin size.

Experiment 8. Convergence of Fourier Series

- 1. The experiment aims to understand the lack of convergence of Fourier series
- 2. Realize the Fourier series

$$f(t) = \frac{4}{\pi} \left[1 - \frac{1}{3} \cos \frac{2\pi 3t}{T} + \frac{1}{5} \cos \frac{2\pi 5t}{T} - \frac{1}{7} \cos \frac{2\pi 7t}{T} + \cdots \right]$$

- 3. Realize the vector t = [0, 100] with an increment of 0.01 and keep T = 20.
- 4. Plot the first 3 or 4 terms on the same graphic window and understand how the smooth sinusoids add up to a discontinuous square function.
- 5. Compute and plot the series for the first 10, 20, 50 and 100 terms of the and understand the lack of convergence at the points of discontinuity.
- 6. With t made a zero vector, f(0) = 1, resulting in the Madhava series for π as

$$\pi = 4\left[1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots\right]$$

7. Use this to compute π for the first 10, 20, 50 and 100 terms.

Experiment 9: Coin Toss and the Level Crossing Problem

- 1. Simulate a coin toss that maps a head as 1 and tail as 0.
- 2. Toss the coin $N=100,\,500,1000,\,5000$ and 500000 times and compute the probability (p) of head in each case.
- 3. Compute the absolute error |0.5 p| in each case and plot against N and understand the law of large numbers.
- 4. Create a uniform random vector with maximum magnitude 10, plot and observe.
- 5. Set a threshold $(V_T = 2)$ and count how many times the random function has crossed V_T .
- 6. Count how many times the function has gone above and below the threshold.

Schedule of Experiments Every experiment should be completed in three hours.

ECL 203	LOGIC DESIGN LAB	CATEGORY	L T		P	CREDIT	
		PCC	0	0	3	2	

Preamble: This course aims to (i) familiarize students with the Digital Logic Design through the implementation of Logic Circuits using ICs of basic logic gates (ii) familiarize students with the HDL based Digital Design Flow.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to

CO 1	Design and demonstrate the functioning of various combinational and sequential circuits using ICs
CO 2	Apply an industry compatible hardware description language to implement digital
	circuits
CO 3	Implement digital circuis on FPGA boards and connect external hardware to the
	boards
CO 4	Function effectively as an individual and in a team to accomplish the given task

Mapping of course outcomes with program outcomes

	PO 1	PO 2)	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	3		3						3			3
CO 2	3	1		1	3	3				3			3
CO 3	3	1		1	3	3	Esto			3	1		3
CO 4	3	3	To	3		3	30. 1	4.		3			3

2014

Assessment

150

Mark distribution

Total CIE ESE ESE Duration Marks 75 75 2.5 hours

Continuous Internal Evaluation Pattern:

Attendance 15 marks Continuous Assessment 30 marks

Internal Test (Immediately before the second series test): 30 marks

End Semester Examination Pattern: The following guidelines should be followed regarding award of marks

(a) Preliminary work : 15 Marks
(b) Implementing the work/Conducting the experiment : 10 Marks
(c) Performance, result and inference (usage of equipments and trouble shooting) : 25 Marks
(d) Viva voce : 20 marks
(e) Record : 5 Marks

General instructions: End-semester practical examination is to be conducted immediately after the second series test covering entire syllabus given below. Evaluation is to be conducted under the equal responsibility of both the internal and external examiners. The number of candidates evaluated per day should not exceed 20. Students shall be allowed for the examination only on submitting the duly certified record. The external examiner shall endorse the record.

Course Level Assessment Questions

Course Outcome 1 (CO1): Design and Development of combinational circuits

- 1. Design a one bit full adder using gates and implement and test it on board.
- 2. Implement and test the logic function $f(A,B,C)=\sum m(0,1,3,6)$ using an 8:1 Mux IC
- 3. Convert a D flip-flop to T flip-flop and implement and test on board.

Course Outcome 2 and 3 (CO2 and CO3): Implementation of logic circuits on tiny FPGA

- 1. Design and implement a one bit subtracter in Verilog and implement and test it on a tiny FPGA board.
- 2. Design and implement a J-K flip-flop in Verilog, implement and test it on a tiny FPGA board.
- 3. Design a 4:1 Multiplexer in Verilog and implement and test it on tiny FPGA board.

List of Experiments:

It is compulsory to conduct a minimum of 5 experiments from Part A and a minimum of 5 experiments from Part B.

Part A (Any 5)

The following experiements can be conducted on breadboard or trainer kits.

- 1. Realization of functions using basic and universal gates (SOP and POS forms).
- 2. Design and Realization of half /full adder and subtractor using basic gates and universal gates.
- 3. 4 bit adder/subtractor and BCD adder using 7483.
- 4. Study of Flip Flops: S-R, D, T, JK and Master Slave JK FF using NAND gates.
- 5. Asynchronous Counter:3 bit up/down counter

- 6. Asynchronous Counter: Realization of Mod N counter
- 7. Synchronous Counter: Realization of 4-bit up/down counter.
- 8. Synchronous Counter: Realization of Mod-N counters.
- 9. Ring counter and Johnson Counter. (using FF & 7495).
- 10. Realization of counters using IC's (7490, 7492, 7493).
- 11. Multiplexers and De-multiplexers using gates and ICs. (74150, 74154)
- 12. Realization of combinational circuits using MUX & DEMUX.
- 13. Random Sequence generator using LFSR.

API ABPART B (Any 5) KALAM

The following experiments aim at training the students in digital circuit design with verilog and implementation in small FPGAs. Small, low cost FPGAs, that can be driven by open tools for simulation, synthesis and place and route, such as *TinyFPGA* or *Lattice iCEstick* can be used. Open software tools such as *yosis* (for simulation and synthesis) and *arachne* (for place and route) may be used. The experiments will lay the foundation for digital design with FPGA with the objective of increased employability.

Experiment 1. Realization of Logic Gates and Familiarization of FPGAs

- (a) Familiarization of a small FPGA bboard and its ports and interface.
- (b) Create the .pcf files for your FPGA board.
- (c) Familiarization of the basic syntax of verilog
- (d) Development of verilog modules for basic gates, synthesis and implementation in the above FPGA to verify the truth tables.
- (e) Verify the universality and non associativity of NAND and NOR gates by uploading the corresponding verilog files to the FPGA boards.

Experiement 2: Adders in Verilog

- (a) Development of verilog modules for half adder in 3 modeling styles (dataflow/structural/behavioural).
- (b) Development of verilog modules for full adder in structural modeling using half adder.

Experiement 3: Mux and Demux in Verilog

- (a) Development of verilog modules for a 4x1 MUX.
- (b) Development of verilog modules for a 1x4 DEMUX.

Experiement 4: Flipflops and coutners

- (a) Development of verilog modules for SR, JK and D flipflops.
- (b) Development of verilog modules for a binary decade/Johnson/Ring counters

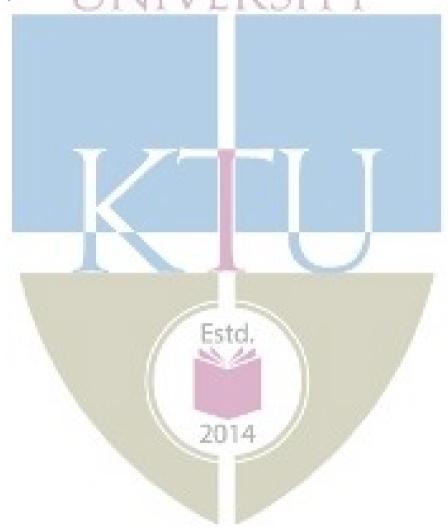
Experiment 5. Multiplexer and Logic Implementation in FPGA

- (a) Make a gate level design of an 8:1 multiplexer, write to FPGA and test its functionality.
- (b) Use the above module to realize the logic function $f(A, B, C) = \sum m(0, 1, 3, 7)$ and test it.
- (c) Use the same 8 : 1 multiplexer to realize the logic function $f(A, B, C, D) = \sum m(0, 1, 3, 7, 10, 12)$ by partitioning the truth table properly and test it.

Experiment 6. Flip-Flops and their Conversion in FPGA

- (a) Make gate level designs of J-K, J-K master-slave, T and D flip-flops, implement and test them on the FPGA board.
- (b) Implement and test the conversions such as T to D, D to T, J-K to T and J-K to D

Experiment 7: Asynchronous and Synchronous Counters in FPGA


- (a) Make a design of a 4-bit up down ripple counter using T-flip-lops in the previous experiment, implement and test them on the FPGA board.
- (b) Make a design of a 4-bit up down synchronous counter using T-flip-lops in the previous experiment, implement and test them on the FPGAboard.

Experiment 8: Universal Shift Register in FPGA

- (a) Make a design of a 4-bit universal shift register using D-flip-flops in the previous experiment, implement and test them on the FPGA board.
- (b) Implement ring and Johnson counters with it.

Experiment 9. BCD to Seven Segment Decoder in FPGA

- (a) Make a gate level design of a seven segment decoder, write to FPGA and test its functionality.
- (b) Test it with switches and seven segment display. Use ouput ports for connection to the display.

ECT281	ELECTRONIC CIRCUITS	CATEGORY	L	T	P	CREDIT
		Minor	3	1	0	4

Preamble: This course aims to develop the skill of the design of various analog circuits.

Prerequisite: EST130 Basics of Electrical and Electronics Engineering

Course Outcomes: After the completion of the course the student will be able to

CO 1	Realize simple circuits using diodes, resistors and capacitors
CO 2	Design amplifier and oscillator circuits
C O 3	Design Power supplies, D/A and A/D convertors for various applications
CO4	Design and analyze circuits using operational amplifiers

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
C O 1	3	3		37/4								2
CO 2	3	3		11								2
C O 3	3	3		4								2
CO 4	3	3		- Name								2

Assessment Pattern

Bloom's Category		Continue	ous Ass	essme	nt Tests	End Semester	Examination
		1		L	2		
Remember	K1	10		100	10		10
Understand	K2	20	12.5	TO.	20		20
Apply	K3	20	250	della	20		70
Analyse	K4						
Evaluate	1 70						
Create	- 1					2007	

Mark distribution

2014

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks
Continuous Assessment Test (2 numbers) : 25 marks
Assignment/Quiz/Course project : 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Realize simple circuits using diodes, resistors and capacitors.

- 1. For the given specification design a differentiator and integrator circuit.
- 2. For the given input waveform and circuit, draw the output waveform and transfer characteristics.
- 3. Explain the working of RC differentiator and integrator circuits and sketch the output waveform for different time periods.

Course Outcome 2 (CO2): Design amplifier and oscillator circuits.

- 1. For the given transistor biasing circuit, determine the resistor values, biasing currents and voltages.
- 2. Explain the construction, principle of operation, and characteristics of MOSFETs.
- 3. Design a RC coupled amplifier for a given gain.
- 4. Design a Hartley oscillator to generate a given frequency.

Course Outcome 3 (CO3): Design Power supplies, D/A and A/D convertors for various applications.

- 1. Design a series voltage regulator.
- 2. For the regulator circuit, find the output voltage and current through the zener diode.
- 3. In a 10 bit DAC, for a given reference voltage, find the analog output for the given digital input.

Course Outcome 4 (CO4): Design circuits using operational amplifiers for various applications

- 1. For the given difference amplifier, find the output voltage.
- 2. Derive the expression for frequency of oscillation of Wien bridge oscillator using op-amp.
- 3. Realize a summing amplifier to obtain a given output voltage.

SYLLABUS

Module 1:

Wave shaping circuits: Sinusoidal and non-sinusoidal wave shapes, Principle and working of RC differentiating and integrating circuits, Clipping circuits - Positive, negative and biased clipper. Clamping circuits - Positive, negative and biased clamper.

Transistor biasing: Introduction, operating point, concept of load line, thermal stability (derivation not required), fixed bias, self bias, voltage divider bias.

Module 2:

MOSFET- Structure, Enhancement and Depletion types, principle of operation and characteristics.

Amplifiers: Classification of amplifiers, RC coupled amplifier – design and working, voltage gain and frequency response. Multistage amplifiers - effect of cascading on gain and bandwidth.

Feedback in amplifiers - Effect of negative feedback on amplifiers.

MOSFET Amplifier- Circuit diagram, design and working of common source MOSFET amplifier.

Module 3:

Oscillators: Classification, criterion for oscillation, Wien bridge oscillator, Hartley and Crystal oscillator. (design equations and working of the circuits; analysis not required).

Regulated power supplies: Review of simple zener voltage regulator, series voltage regulator, 3 pin regulators-78XX and 79XX, DC to DC conversion, Circuit/block diagram and working of SMPS.

Module 4 : Operational amplifiers: Characteristics of op-amps(gain, bandwidth, slew rate, CMRR, offset voltage, offset current), comparison of ideal and practical op-amp(IC741), applications of op-amps- scale changer, sign changer, adder/summing amplifier, subtractor, integrator, differentiator, Comparator, Instrumentation amplifier.

Module 5:

Integrated circuits: D/A and A/D convertors — important specifications, Sample and hold circuit, R-2R ladder type D/A convertors.

Flash and sigma-delta type A/D convertors.

Text Books

- **1.** Robert Boylestad and L Nashelsky, Electronic Devices and Circuit Theory, Pearson, **2015.**
- **2.** Salivahanan S. and V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 2008.

Reference Books

4.1

4.2

4.3

Differential amplifier

ELECTRONICS AND COMMUNICATION ENGINEERING

- 1. David A Bell, Electronic Devices and Circuits, Oxford University Press, 2008.
- 2. Neamen D., Electronic Circuits, Analysis and Design, 3/e, TMH, 2007.
- 3. Millman J. and C. Halkias, Integrated Electronics, 2/e, McGraw-Hill, 2010.
- 4. Op-Amps and Linear Integrated Circuits, Ramakant A Gayakwad, PHI, 2000.
- 5. K.Gopakumar, Design and Analysis of Electronic Circuits, Phasor Books, Kollam, 2013

	Course Contents and Lecture Schedule	
	AL ADDUL MALAM	
No	Topic T L No. o	f Lectures
1	Wave shaping circuits	
1.1	Sinusoidal and non-sinusoidal wave shapes	1
1.2	Principle and working of RC differentiating and integrating circuits	2
1.3	Clipping circuits - Positive, negative and biased clipper	1
1.4	Clamping circuits - Positive, negative and biased clamper	1
	Transistor biasing	
1.5	Introduction, operating point, concept of load line	1
	Thermal stability, fixed bias, self bias, voltage divider bias.	3
2	Field effect transistors	
2.2	MOSFET- Structure, Enhancement and Depletion types, principle of	2
	operation and characteristics	
	Amplifiers	
2.3	Classification of amplifiers, RC coupled amplifier - design and working	3
	voltage gain and frequency response	
2.4	Multistage amplifiers - effect of cascading on gain and bandwidth	1
2.5	Feedback in amplifiers - Effect of negative feedback on amplifiers	1
	MOSFET Amplifier- Circuit diagram, design and working of common	2
	source MOSFET amplifier	
	ESIG.	
3	Oscillators	
3.1	Classification, criterion for oscillation	1
3.2	Wien bridge oscillator, Hartley and Crystal oscillator	3
_	Regulated power supplies	
3.3	simple zener voltage regulator, series voltage regulator line and load regulation	3
3.4	3 pin regulators-78XX and 79XX	1
3.5	DC to DC conversion, Circuit/block diagram and working of SMPS	1
4	Operational amplifiers	
,	Operational amplifiers	

characteristics of op-amps(gain, bandwidth, slew rate, CMRR, offset

applications of op-amps- scale changer, sign changer, adder/summing

amplifier, subtractor, integrator, differentiator

voltage, offset current), comparison of ideal and practical op-amp(IC741)

2

3

4.4	Comparator, Schmitt trigger, Linear sweep generator					
5	Integrated circuits					
5.1	D/A and A/D convertors – important specifications, Sample and hold circuit	1				
5.2	R-2R ladder type D/A convertors	2				
5.3	Flash and successive approximation type A/D convertors	2				
5.4	Circuit diagram and working of Timer IC555, astable and monostable	3				
	multivibrators using 555					

Assignment:

Atleast one assignment should be simulation of transistor amplifiers and op-amps on any circuit simulation software.

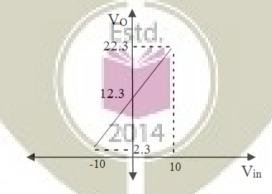
Model Question paper

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION, (Model Question Paper)

Course Code: ECT281

Course Name: ELECTRONIC CIRCUITS


Max. Marks: 100

Duration: 3 Hours

PART A

Answer ALL Questions. Each Carries 3 mark.

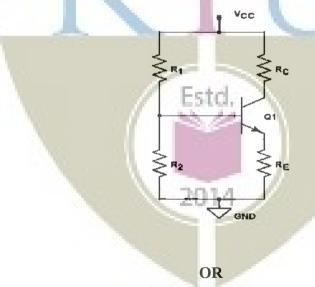
Design a clamper circuit to get the following transfer characteristics, assuming voltage drop across the diode s 0.7V.

- 2 Give the importance of biasing in transistors? Mention significance of operating K2 point.
- What is line regulation and load regulation in the context of a voltage regulator? K2 Explain with equation for percentage of regulation:-
- 4 Compare the features of FET with BJT:- K1
- 5 What is the effect of cascading in gain and bandwidth of amplifier? K1

- 6 Discuss about simple zener shunt voltage regulator:-K1
- 7 Realize a circuit to obtain $Vo= -2V_1+3V_2+4V_3$ using operational amplifier. Use K3 minimum value of resistance as $10K\Omega$.
- Design a monostable multivibrator using IC 555 timer for a pulse period of 1 ms. **K**3 8
- Describe the working of a Flash type A/D Converter, with 9 K2 example.
- 10 Define: (1) Slew rate, (2) CMRR, (3) offset voltage and current: K2

PART

Answer one question from each module; each question carries 14 marks.


Module - I

- Design a differentiator circuit for a square wave signal with Vpp=10 and frequency 11 5
- 10KHz:a. CO₁

K3

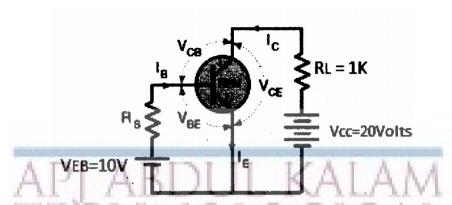
Consider a self-biasing circuit shown in figure below with Vcc=20V, R_c=1.5KΩ, b. 9 which is operated at Q-point (Vce=8V, Ic=4mA), If h_{FE}=100, find R₁, R₂ and R_e. CO₂ Assume $V_{BE}=0.7V$.

- 12 Explain the working of an RC differentiator circuit for a square wave input with period
- T.Sketchits output waveform for RC \gg T ,RC \ll T and RC = T. a.

5 CO₁

K3

5


With reference to the following circuit, draw the load line and mark the Q point of a b. Silicon transistor operating in CE mode based on the following data (β =80, CO₂ Rs=47K Ω , R_L=1K Ω , neglect I_{CBO})

K3

4

K2

c. Draw the output waveform and transfer characteristics of the given clipper circuit.

 V_{in} V_{in}

Circuit diagram

Module - II

- With neat sketches, explain the construction, principle of operation and 9
- a. characteristics of an N-channel enhancement MOSFET:
 CO2

 K2
- b. Draw the circuit of an RC coupled amplifier and explain the function of each element: CO2
 K2

Estd.

OR

- Draw the circuit of a common source amplifier using MOSFET. Derive the expressions for voltage gain and input resistance:
 CO2
- Sketch the frequency response of an RC coupled amplifier and write the reasons for b. gain reduction in both ends.

5 CO2

Module - III

Design a Hartley oscillator to generate a frequency of 150KHz. 5
a. CO2

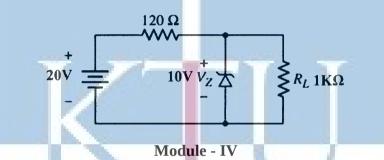
K3

3

CO₃

10

5 CO4 K3

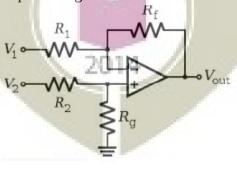

9

K3

b. Draw the circuit of a series voltage regulator. Explain its working when the input voltage as well as load current varies. Design a circuit to deliver 5V, 100mA CO3 maximum load current:-

OR

- With neat diagram and relevant equations explain the working of wein bridge 7 a. oscillator using BJT:- CO2 K2
- b. Derive the expression for the frequency of oscillation of Wien bridge oscillator using BJT CO2
- c.
 For the circuit shown below, find the ouput voltage across RL and current through the zener diode:-



- 17 With circuit, relevant equations and waveforms explain the working of a Schmit
- a. trigger using op-amp:
 CO4

 K2

The difference amplifier shown in the figure have $R_1=R_2=5K\Omega$, $R_F=10K\Omega$,

b. $R_g=1K\Omega$. Calculate the output voltage.

OR

- 18 With circuits and equations show that an op-amp can act as integrator,
- a. differentiator, adder and subtractor. CO4 K2

b. What do you mean by differential amplifier? With neat sketches, explain the 5 working of an open loop OP-AMP differential amplifier. CO₄ K2 Module - V Explain the working of R-2R ladder type DAC. In a 10 bit DAC, reference voltage is 19 10 CO₃ a. given as 15V. Find analog output for digital input of 1011011001. K3 With neat diagram explain the working of IC555 timer. 4 b. CO₄ K3 A 4-bit R-2R ladder type DAC having R= $10 \text{ k}\Omega$ and V_R= 10 V. Find its resolution and 20 4 output voltage for an input 1101. a. CO₄ K3 Design an astable multivibrator using IC 555 timer for a frequency of 1KHz and a 5 b. duty cycle of 70%. Assume $c=0.1\mu F$. CO₄ K3 Draw the circuit diagram of a simple sample and hold circuit and explain the 5 c. necessity of this circuit in A to D conversion. CO₄ K2

Simulation Assignments

The following simulations can be done in QUCS, KiCad or PSPICE.

- 1. Design and simulate RC coupled amplifer. Observe the input and output signals. Plot the AC frequency response and understand the variation of gain at high frequencies. Observe the effect of negative feedback by changing the capacitor across the emitter resistor.
- 2. Design and simulate Wien bridge oscillator for a frequency of $10 \, kHz$. Run a transient simulation and observe the output waveform.
- 3. Design and simulate series voltage regulator for output voltage $V_O = 10V$ and output current $I_O = 100mA$ with and without short circuit protection and to test the line and load regulations.
- 4. Design and implement differential amplifier and measure its CMRR. Plot its transfer characteristics.
- 5. Design and simulate non-inverting amplifier for gain 5. Observe the input and output signals. Run the ac simulation and observe the frequency response and 3— db bandwidth.
- 6. Design and simulate a 3 bit flash type ADC. Observe the output bit patterns and transfer characteristics
- 7. Design and simulate R 2R DAC ciruit.
- 8. Design and implement Schmitt trigger circuit for upper triggering point of +8 V and a lower triggering point of -4 V using op-amps.

2014

ECT 283	ANALOG COMMUNICATION	CATEGORY	L	Т	P	CREDIT
		Minor	3	1	0	4

Preamble: The course has two objectives: (1) to study two analog modulation schemes known as amplitude modulation and frequency modulation (2) to understand the implementations of transmitter and reciever systems used in AM and FM.

Prerequisite: NIL

Course Outcomes: After the completion of the course the student will be able to

	TECTIVIOLOCICAL
CO 1	Explain various components of a communication system
CO 2	Discuss various sources of noise, and its the effect in a communication system
CO 3	Explain amplitude modulation and its variants for a sinusoidal message
CO 4	Explain frequency modulation and its variants for a sinusoidal message
CO 5	List and compare various transmitter and receiver systems of AM and FM

Mapping of course outcomes with program outcomes

	PO	PO 2	P	Э3	PO 4	PO 5	PO) 6	PO 7	PO 8	PO 9	PO	PO	PO
	1											10	11	12
CO 1	3	3			0.0				-					
CO 2	3	3			100				-					
CO 3	3	3												
CO 4	3	3		1										
CO 5	3	3												
CO 6	3	3												

Assessment Pattern

Bloom's Category		Continuous A	ssessment Tests	End Semester Examination
		1 Es	2	
Remember	K1	10	10	10
Understand	K2	20	20	20
Apply	K3	20	20	70
Analyse	- 7	TALL IN		
Evaluate		1	1//	
Create		21	114	

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks
Continuous Assessment Test (2 numbers) : 25 marks

Assignment/Quiz/Course project

: 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Explain various components of a communication system.

- 1. What is the need of a modulator in a radio communication system?
- 2. What are the various frequency bands used in radio communication
- 3. Why base band communication is infeasible for terrestrial air transmission?

Course Outcome 2 (CO2): Discuss various sources of noise, and its the effect in a communication system.

- 1. What is thermal noise?
- 2. Describe the noise voltage generated across resistor?
- 3. Why is it that noise voltage can not be used as a source for power?

Course Outcome 3 (CO3): Explain amplitude modulation and its variants for a sinusoidal message.

- 1. Write down the equation for an AM wave for a sinusoidal message
- 2. What is the significance of modulation index?
- 3. Describe envelope detector

Estd

Course Outcome 4 (CO4): Explain frequency modulation and its variants for a sinusoidal message

- 4. How is practical bandwidth for an FM wave determined?
- 5. What are the value of frequency devalation, bandwidth for a typical FM station?
- 6. What is PLL?

Course Outcome 5 (CO5): List and compare various transmitter and receiver systems of AM and FM

- 1. Draw the block diagram of a super heterodyne receiver.
- 2. How is adjasecent channel rejection achieved in superhet? How is image rejection achieved in a superhet?
- 3. Explain the working principle of one FM generator, and one FM demodulator.

Syllabus

Module I

Introduction, Elements of communication systems, Examples of analog communication systems, Frequency bands, Need for modulation.

Noise in communication system, Definitions of Thermal noise (white noise), Various types of noise -- Shot noise, Partition noise, Flicker noise, Burst noise, (No analysis required) Signal to noise ratio, Noise factor, Noise temperature, Narrow band noise.

Module II

Brief overview of signals and systems -- Signals, Classification of signals, Energy and power of signals, Basic signal operations, Impulse function, Properties of impulse function, Convolution, LTI system, Fourier Transform, Basic properties, Using Fourier transform to study LTI system.

Module III

Amplitude modulation (AM), Double-side band suppressed carrier (DSB-SC) modulation Single sideband modulation (SSB) – spectrum, power, efficiency of all the three variants. (Study of only tone modulation in DSB-SC, AM, and SSB.) Amplitude-modulator implementations – switching modulator, balanced modulator. AM demodulators –- Coherent demodulator. Envelope detector.

Module IV

Frequency modulation – modulation index, frequency deviation, average power, spectrum of tone modulated FM. Heuristics for bandwidth of FM. Narrow band FM and wide-band FM. FM generation: Varactor diode modulator, Armstrongs method. FM demodulation – slope detection, PLL demodulator.

Module V

Superheterodyne reciever, Principle of Carrier synchronization using PLL, NTSC Television broadcasting.

Text Books

2014

- 1. Kennedy, Davis, "Electronic Communication Systems," 4th Edition, Tata McGraw Hill
- 2. Wayne Tomasi, "Electronic Communication Systems Fundamentals through Advanced," 5th edition, Pearson.
- 3. B. P. Lathi, Zhi Ding, Modern Digital and Analog Communication Systems, 4th edition, Oxford University Press.

Reference books

1. Leon W. Couch, Digital and Analog Communication Systems, 8th edition, Prentice Hall.

Course Contents and Lecture Schedule

No	Topic	No. of Lectures
	API ABDUL KALAN	A
Ι	Introduction, Elements of communication systems, Examples of analog communication systems, Frequency bands, Need for modulation	3
	Noise in communication system, Definitions of Thermal noise (white noise), Shot noise, Partition noise, Flicker noise, Burst noise, (No analysis required) Signal to noise ratio, Noise factor, Noise temperature, Narrow band noise.	5
II	Brief Overview of Signals and Systems: Signals, Classification of signals, Energy and power of signals, Basic signal operations,	4
	Impulse function, Properties of impulse function, Convolution,	2
	Definition of Linear time-invariant system. Input-output relation of LTI system	2
	Definition of Fourier Transforms, Some Properties of Fourier	5
	Transform – Linearity, Time-shift, Modulation theorem, Parsevals	
	theorem. Using Fourier Transform to study LTI systems.	7
III	Amplitude modulation (AM) — modulation index, spectrum, power, efficiency.	2
	Double-side band suppressed carrier (DSB-SC) modulation – spectrum, power, efficiency.	1
	Single sideband modulation (SSB) – spectrum, power, efficiency. (Study of only tone modulation in DSB-SC, AM, and SSB.)	1
	Amplitude-modulator implementations – switching modulator, balanced modulator (at block diagram level).	2
	AM demodulators Coherent demodulator. Envelope detector.	3
IV	Frequency modulation – modulation index, frequency deviation, average power, spectrum of tone modulated FM	4
	Heuristics for bandwidth of FM. Narrow band FM and wide-band FM.	1
	FM generation: Varactor diode modulator, Armstrongs method. FM demodulation – slope detection, PLL demodulator.	4

V	Receivers for AM/FM: Super heterodyne receiver (block	3
	diagram), Adjacent channel selectivity, Image rejection, Double	
	conversion.	
	Carrier Synchronization using PLL	1
	NTSC Television broadcasting using AM, FM radio broadcasting.	2

Sample Assignments

- 1. Using the message signal $m(t)=t/1+t^2$. Determine and sketch the modulated wave for amplitude modulation whose percentage of modulation equal the following values 50%, 100%, 120%
- 2. A standard AM transmission sinusoidally modulated to a depth of 30% produces sideband frequencies of 4.98MHz & 4.914 MHz. the amplitude of each sideband frequency is 75V. Determine the amplitude and frequency of the carrier?
- 3. Write the typical frequency ranges for the following classification of EM spectrum: MF, HF,VHF and UHF.
- 4. List the basic functions of a radio transmitter and corresponding functions of the receiever?
- 5. Discuss the types causes and effects of various forms of noise at a receiver.
- 6. What are the different frequency components in SSB & DSBSC signals?
- 7. Describe the AM generation using diode as a nonlinear resistor.
- 8. Define the following terms in the context of FM -- Frequency deviation, frequency sensitivity, instantaneous phase deviation.
- 9. The equation for FM wave is $s(t) = 10 \cos(2\pi * 10^6 t + 5 \sin(200 \pi t + 10 \sin(3000 \pi t)))$ Calculate frequency deviation, approximate transmission BW and power in the modulated signal.

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH. DEGREE EXAMINATION

ECT 283: Analog Communication

Max. Marks: 60 Duration: 3 hours

PART A

Answer all questions, Each question carries 3 marks each.

- 1. Explain the need for modulation.
- 2. A receiver connected to an antenna whose resistance is 50 ohm has an equivalent noise resistance of 30 ohm .calculate receiver noise figure in decibels & its equivalent noise temperature?
- 3. Plot the signal x(t)=u(t+1)+2u(t)-u(t-3)
- 4. State Parseval's theorem for DTFT. What is its signifiance?
- 5. Define amplitude modulation? Give the frequency spectrum for AM wave?
- 6. Derive the expression for total power of AM wave?
- 7. Explain the following terms a)Modulation index b)Instantaneous frequency deviation
- 8. Compare AM & FM systems.
- 9. What are the advantages that the super heterodyne receiver has over the receivers? Are there any disadvantages?
- 10. Give the limitations of NTSC systems?

PART B

- 11. (a) Explain the following (i) Thermal noise (ii) Flicker noise (6 marks)
 - (b) Explain the elements of communication systems in detail? (8 marks)

OR

- 12. (a) Define the signal to noise ratio and noise and noise figure of a receiver? How noise temperature related to noise figure? (8 marks)
 - (b) List the basic functions of a radio transmitter & the corresponding functions of the receiver? (6 marks)
- 13. (a) Distinguish between energy & power signals. Give an example for each category? (6 marks)
 - (b) State and prove the linearity and time shifting property of Fourier Transform? (8 marks)

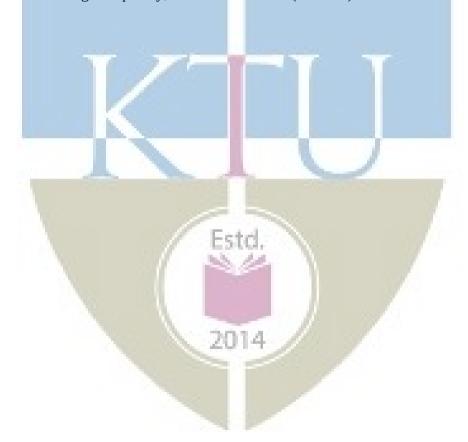
OR

- 14. (a) Check whether the systems are linear & stable. (i) $y(t)=e^{x(t)}$ (ii) y[n]=x[n-1] (6 marks)
 - (b) Find convolution of signal x[n] = [1,-1, 1, 1] with itself? (5 marks)
 - (c)Distinguish between causal & non causal systems with suitable examples? (3 marks)

OR

15. (a) Derive the expression of total power in SSB wave? (7 marks)

- (b) Describe the AM demodulation using envelope detector? (7 marks)


 OR
- 16. (a) Describe the DSB SC wave generation process using balanced modulation (9 marks)
 - (b) Give the spectrum of SSB & DSB SC waves? Make comparison of bandwidth requirements. (5 marks)
- 17. (a) Explain the direct method of generating FM signal using varactor diode? (6 marks)
 - (b) Explain frequency modulation and it average power? (6 marks)

OR

- 18. (a) Explain with relevant mathematical expressions, the demodulation of FM signal using PLL? (10 marks)
 - (b) Give the spectrum of tone modulated FM? (4 marks)
- 19. (a) Explain the super heterodyne receiver with a detailed block diagram? (10 marks)
 - (b) Explain how the use of RF amplifier & improve the NR of a super heterodyne receiver? (4 marks)

OR

- 20. (a) Explain the TV broadcasting system using AM? (10 marks)
 - (b) What is image frequency, how does it arise? (4 marks)

ELECTRONICS AND COMMUNICATION ENGINEERING Simulation Assignments

The following simulations can be done in Python/SCILAB/MTLAB or LabVIEW.

Amplitude Modulation Schemes

- Create a sinusoidal carrier $(x_c(t))$ and AF signal (x_t) with the frequency of carrier being 10 times that of the AF signal.
- Compute the AM signal as $mx_c(t)x(t) + x_c(t)$ for various values of the modulation index m ranging from 0 to 1.
- Observe the power spectral density of this AM signal.
- $mx_c(t)x(t)$ is the DSB-SC signal. Observe this signal and its power spectral density.
- Load a speech signal in say in .wav format into a vector and use it in place of the AF signal and repeat the above steps for a suitable carrier.

SSB Signal Generation

- Simulate an SSB transmitter and receiver using $-\frac{\pi}{2}$ shifters. This can be realized by the Hilbert Transform function in Python, MATLAB etc.
- Test the system with single tone and speech signal.
- Add channel noise to the signal and test for the robustness against noise.
- Slightly offset the receiver carrier phase and observe the effect at the reception.

FM Signal Generation

- Create a sinusoidal carrier $(x_c(t))$ and a single tone signal (x(t)) with the frequency of carrier being 50 times that of the message tone.
- Compute the FM signal with a modulation index of 5.
- Observe the power spectral density of this FM signal for spectral width of 10 times that tone frequency.

AM Radio Receiver

2014

- Procure a radio kit
- Assemble the kit by soldering all components and enjoy.

FM Radio Receiver

- Procure an FM radio kit
- Assemble the kit by soldering all components and enjoy.

Generation of Discrete Signals

- Generate the following discrete signals
 - Impulse signal
 - Pulse signal and
 - Triangular signal

Download Syllabus and Study Materials from WWW.KTUSTUDENTS.IN

ECT285	INTRODUCTION TO SIGNALS AND N	CATEGORY	ΜŲ	M-C/	P IC	CREDIT	ERING
	SYSTEMS	Minor	3	1	0	4	

Preamble: This course aims to apply the concepts of electrical signals and systems

Prerequisite: None

Course Outcomes: After the completion of the course the student will be able to

CO 1	Define and classify continuous and discrete signals
CO ₂	Explain and characterize a system and LTI system
CO ₃	Explain the spectrum of a signal

Mapping of course outcomes with program outcomes

	PO	PO	2	PO 3	PO	4	PO	5	PO 6	P	O 7	PO 8	P	0 9	PO	PO	PO 12
	1		+	4	-4		10			1		1	4	1 1	10	11	
CO 1	3	3				N	2		1/1	-	H.	S		Y			
CO ₂	3	3			3		2		A. T	-	1. 16.	-24		_ A.			
CO 3	3	3			3		2										

Assessment Pattern

Bloom's Categor	cy	Continuous Ass	essi	ment	End Semester Exar	nination
		Tests				
		1		2		
Remember		10	10		20	
Understand		10	10		20	
Apply	3	30	30		60	
Analyse		W / Carry				
Evaluate						
Create						

Continuous Internal Evaluation Pattern:

Attendance : 10 marks
Continuous Assessment Test (2 numbers) : 25 marks
Assignment/Quiz/Course project : 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Definition and classification of signals

- 1. Define a signal. Classify them to energy and power signals.
- 2. Determine whether the signal $x(t)=\cos(3t)+\sin(5t)$ is periodic. If so what is the period?
- 3. Compare the frequency range of continuous time and discrete signals.

Course Outcome 2 (CO2): Explain and characterize a system

- 1. Check whether the system $y[n]=\cos\{x[n]\}$ is a. Stable b. Causal c. time invariant d. linear
- 2. Derive the ouptut of a continuous time LTI system
- 3. Give the meaning of impulse response of LTI systems

Course Outcome 2 (CO3): Spectra of Signals

- 1. State and prove Parsevals theorem
- 2. State and prove the modulation property of Fourier transform
- 3. Find the continuous tiime Fourier transform a pulse of width w and amplitude unity and centred about the origin.

ESTREAMICS AND COMMUNICATION ENGINEERING

Module 1: Introduction to Continuous Time Signals

Definition of signal. Basic continuous-time signals. Frequency and angular frequency of continuous-time signals. Basic operation on signals. Classification of continuous-time signals:Periodic and Non-periodic signals. Even and Odd signals, Energy and power signals. Noise and Vibration signals.

Module 2 : Discrete Time Signals

Basic discrete-time signals. Frequency and angular frequency of discrete-time signals. Classification of discrete-time signals: Periodic and Non-periodic signals. Even and Odd signals, Energy and power signals.

Module 3: Systems

System definition. Continuous-time and discrete-time systems. Properties – Linearity, Time invariance, Causality, Invertibility, Stability. Representation of systems using impulse response.

Module 4: Linear time invariant systems

LTI system definition. Response of a continous-time LTI system and the Convolutional Integral. Properties. Response of a discrete-time LTI system and the Convolutional Sum. Properties. Correlation of discrete-time signals

Module 5: Frequency analysis of signals

Concept of frequency in continous-time and discrete-time signals. Fourier transform of continuous-time and discrete-time signals. Parsevals theorem. Interpretation of Spectra. Case study of a vibration signal. The sampling theorem.

Text Books

- 1. Simon Haykin, Barry Van Veen, Signals and systems, John Wiley
- 2. Hwei P.Hsu, Theory and problems of signals and systems, Schaum Outline Series, MGH.
- 3. Anders Brandt, Noise and Vibration Analysis, Wiley publication.
- 4. A Anand Kumar, Signals and systems, PHI learning
- 5. Sanjay Sharma, Signals and systems

Course Contents and Lecture Schedule

No	Topic	No. of Lectures
1	Introduction to Continuous Time Signals	
1.1	Definition of signal, Basic continous-time signals.	3
1.2	Frequency and angular frequency of continous-time signals	1
1.3	Basic operation on signals	1
1.4	Classification of continous-time signals	3
1.5	Noise and Vibration signals	1
2	Discrete Time Signals	
2.1	Basic discrete-time signals and its frequency	3
2.2	Classification of discrete-time signals	3

	ELECTRONICS AND COMMUNICATION	N ENGIN
3	Systems	-1
3.1	System definition- CTS & DTS	1
3.2	Properties-Linearity, Time invariance	3
3.3	Causality, Invertibility, Stability	2
3.4	Representation of systems using impulse response	1
4	Linear time invariant systems	•
4. 1	LTI system definition.Properties.	1
4.2	Response of a continuous-time LTI system and the Convolutional Integral	3
4. 3	Response of a discrete-time LTI system and the Convolutional Sum	3
4.4	Correlation of discrete-time signals	2
5	Frequency analysis of signals	
5. 1	Concept of frequency in continuous-time and discrete-time signals	1
5.2	CTFT and spectra	3
5.3	DTFT and spectra	3
5.4	DFT	1
5. 5	Parsevals theorem	1
5.6	Case study of a vibration signal	1
5. 7	The sampling theorem	2

Model Question Paper

A P J Abdul Kalam Technological University

Fourth Semester B Tech Degree Examination

ECT 285 Introduction to Signals and Systems

Time: 3 Hrs Max. Marks: 100

PART A

Answer All Questions

1	Differentiate between energy and power signal with example.	(3)	K_2
2	Find the even and odd components of $x(t) = e^{jt}$.	(3)	K_2
3	Define discrete time signal and comment about its frequency	(3)	K_2
	range.		
4	Sketch the sequence $x(n) = 2\delta(n-3) - \delta(n-1) + \delta(n) + \delta(n+2)$.	(3)	K_2
5	State and explain BIBO condition for system.	(3)	K_1
6	Distinguish between continuous time and discrete time systems.	(3)	K_2
7	Derive a relationship between input and output for a discrete	(3)	K_2
	LTI system		
8	Compute the energy of the signal	(3)	K_2
	$x(n) = 0.8^n u(n)$		
9	State and explain sampling theorem.	(3)	K_2
10	Comment about the input output characteristics of continuous	(3)	K_2
	time Fourier transform	. ,	

PART B

Answer one question from each module. Each question carries 14 mark.

- 11(A) Determine whether or not the signal $x(t) = \cos t + \sin \sqrt{2}t$ (7) K_2 is periodic. If periodic determine its fundemental period.
- 11(B) Define, sketch and list the properties of continuous time $\,$ (7) K_2 impulse function

OR

- 12(A) Determine whether the signal $x(t) = e^{-2t}u(t)$ is energy signal, power signal or neither. (7)
- 12(B) Define unit step function and plot u(t+2) u(t-2). (7) K_2
- 13(A) Given the sequence $x(n)=\{1,2,1,1,3\}, -1\leq n\leq 3.$ (8) K_3 Sketch
 - x(-n+2)
 - $\bullet x(n/2)$
- 13(B) Show that any signal x(n) can be represented as the summation of an even and odd signal. (6) K_2

OR.

- Discuss briefly the basic discrete time signals.
- (14) K_2

15(A) Explain linear and nonlinear systems.

- (6) K_2
- 15(B) Apply the properties of system to check whether the following systems are linear or nonlinear
- (8) K_3

- y(t) = tx(t)
- $y(n) = x^2(n)$

Estd.

OR

- 16(A) A system has an input-output relation given by y(n) = (14) K_3 $T\{x(n)\} = nx(n)$. Determine whether the system is
 - a)Memoryless
 - b)Causal
 - c) Linear
 - d) Time invariant
 - e)Stable

The impulse response of a linear time invariant system is $h(n) = \{1, 2, 1, -1\}, -1 \le n \le 2$ Determine the response of the system for the input signal

Determine the response of the system for the input signal $x(n) = \{1, 2, 3, 1\}$

API ABDUL KALAM TECHNOLOGICAL

- A system is formed by connecting two systems in cascade. The impulse response of the system is given by $h_1(t)$ and $h_2(t)$ respectively where $h_1(t) = e^{-2t}u(t)$ and $h_2(t) = 2e^{-t}u(t)$
 - a) Find overall impulse response h(t) of the system.
 - b) Determine the stability of the overall system
- 19(A) Find the Nyquist rate of $x(t) = \sin 400\pi t + \cos 500\pi t$.
- 19(B) State and prove modulation property of Fourier Transform
- $(7) \quad K_2$
- (7) K_2

OR

- 20(A) Find the CTFT of the signal $x(t) = te^{-at}u(t)$
- 20(B) State and prove Parsevals theorem

(7) K_2 (7) K_2

Simulation Assignments

The following simulation assignments can be done with Python/MATLAB/ SCILAB/OCTAVE

- 1. Generate the following discrete signals
 - Impulse signal
 - Pulse signal and
 - Triangular signal
- 2. Write a function to compute the DTFT of a discrete energy signal. Test this function on a few signals and plot their magnitude and phase spectra.
- 3. Compute the linear convolution between the sequences x = [1, 3, 5, 3] with h = [2, 3, 5, 6]. Observe the stem plot of both signals and the convolution.
 - Now let h = [1, 2, 1] and x = [2, 3, 5, 6, 7]. Compute the convolution between h and x.
 - Flip the signal x by 180° so that it becomes [7, 6, 5, 3, 2]. Convolve it with h. Compare the result with the previous result.
 - Repeat the above two steps with h = [1, 2, 3, 2, 1] and h = [1, 2, 3, 4, 5, 4, 3, 2, 1]
 - Give your inference.
- 4. Write a function to generate a unit pulse signal as a summation of shifted unit impulse signals
 - Write a function to generate a triangular signal as a convolution between two pulse signals.
- 5. Relaize a continuous time LTI system with system response

$$H(s) = \frac{5(s+1)}{(s+2)(s+3)}$$

- . One may use *scipy.signal.lti* package in Python.
- Make it into a discrete system (possibly with scipy.signal.cont2discrete)
- Observe the step response in both cases and compare.